part 1)
Find the partial derivatives of the function
f(x,y)=xsin(7x^6y):
fx(x,y)=
fy(x,y)=
part 2)
Find the...
part 1)
Find the partial derivatives of the function
f(x,y)=xsin(7x^6y):
fx(x,y)=
fy(x,y)=
part 2)
Find the partial derivatives of the function
f(x,y)=x^6y^6/x^2+y^2
fx(x,y)=
fy(x,y)=
part 3)
Find all first- and second-order partial derivatives of the
function f(x,y)=2x^2y^2−2x^2+5y
fx(x,y)=
fy(x,y)=
fxx(x,y)=
fxy(x,y)=
fyy(x,y)=
part 4)
Find all first- and second-order partial derivatives of the
function f(x,y)=9ye^(3x)
fx(x,y)=
fy(x,y)=
fxx(x,y)=
fxy(x,y)=
fyy(x,y)=
part 5)
For the function given below, find the numbers (x,y) such that
fx(x,y)=0 and fy(x,y)=0
f(x,y)=6x^2+23y^2+23xy+4x−2
Answer: x= and...
. For the function x,y=xarctan(xy) , compute
fx , fy ,
fxx , fyy , and...
. For the function x,y=xarctan(xy) , compute
fx , fy ,
fxx , fyy , and
fxy
Consider the function f(x,y) = xe^((x^2)-(y^2))
(a) Find f(1,−1), fx(1,−1), fy(1,−1). Use these values to find...
Consider the function f(x,y) = xe^((x^2)-(y^2))
(a) Find f(1,−1), fx(1,−1), fy(1,−1). Use these values to find a
linear approximation for f (1.1, −0.9).
(b) Find fxx(1, −1), fxy(1, −1), fyy(1, −1). Use these values to
find a quadratic approximation for f(1.1,−0.9).
Please find ALL second partial derivatives of f: fx, fy, fz,
fxx, fyy, fzz, fxy, fxz,...
Please find ALL second partial derivatives of f: fx, fy, fz,
fxx, fyy, fzz, fxy, fxz, and fyz
For ?(?, ?, ?) = (?^?)(?^?)(?^?)
THANK YOU
You are given that the function f(x,y)=8x2+y2+2x2y+3 has first
partials fx(x,y)=16x+4xy and fy(x,y)=2y+2x2, and has second...
You are given that the function f(x,y)=8x2+y2+2x2y+3 has first
partials fx(x,y)=16x+4xy and fy(x,y)=2y+2x2, and has second
partials fxx(x,y)=16+4y, fxy(x,y)=4x and fyy(x,y)=2. Consider the
point (0,0). Which one of the following statements is true?
A. (0,0) is not a critical point of f(x,y).
B. f(x,y) has a saddle point at (0,0).
C. f(x,y) has a local maximum at (0,0).
D. f(x,y) has a local minimum at (0,0).
E. The second derivative test provides no information about the
behaviour of f(x,y) at...
Suppose that the function f(x, y) has continuous partial
derivatives fxx, fyy, and fxy at all...
Suppose that the function f(x, y) has continuous partial
derivatives fxx, fyy, and fxy at all points (x,y) near a critical
points (a, b). Let D(x,y) = fxx(x, y)fyy(x,y) – (fxy(x,y))2 and
suppose that D(a,b) > 0.
(a) Show that fxx(a,b) < 0 if and only if fyy(a,b) <
0.
(b) Show that fxx(a,b) > 0 if and only if fyy(a,b) >
0.
Find fxx, fxy, fyy when f(x, y) = xe^(x^2−xy+y^2)
Find fxx, fxy, fyy when f(x, y) = xe^(x^2−xy+y^2)