Question

(1 point) Find all the first and second order partial derivatives of f(x,y)=7sin(2x+y)−2cos(x−y) A. ∂f∂x=fx=∂f∂x=fx= B....

(1 point)

Find all the first and second order partial derivatives of f(x,y)=7sin(2x+y)−2cos(x−y)

A. ∂f∂x=fx=∂f∂x=fx=

B. ∂f∂y=fy=∂f∂y=fy=

C. ∂2f∂x2=fxx=∂2f∂x2=fxx=

D. ∂2f∂y2=fyy=∂2f∂y2=fyy=

E. ∂2f∂x∂y=fyx=∂2f∂x∂y=fyx=

F. ∂2f∂y∂x=fxy=∂2f∂y∂x=fxy=

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
part 1) Find the partial derivatives of the function f(x,y)=xsin(7x^6y): fx(x,y)= fy(x,y)= part 2) Find the...
part 1) Find the partial derivatives of the function f(x,y)=xsin(7x^6y): fx(x,y)= fy(x,y)= part 2) Find the partial derivatives of the function f(x,y)=x^6y^6/x^2+y^2 fx(x,y)= fy(x,y)= part 3) Find all first- and second-order partial derivatives of the function f(x,y)=2x^2y^2−2x^2+5y fx(x,y)= fy(x,y)= fxx(x,y)= fxy(x,y)= fyy(x,y)= part 4) Find all first- and second-order partial derivatives of the function f(x,y)=9ye^(3x) fx(x,y)= fy(x,y)= fxx(x,y)= fxy(x,y)= fyy(x,y)= part 5) For the function given below, find the numbers (x,y) such that fx(x,y)=0 and fy(x,y)=0 f(x,y)=6x^2+23y^2+23xy+4x−2 Answer: x= and...
Find all second partial derivatives of f : ?(?, ?, ?) = ?^??^??^? fx= fy= fz=...
Find all second partial derivatives of f : ?(?, ?, ?) = ?^??^??^? fx= fy= fz= fxx= fyy= fzz= fxy= fxz= fyz=
Please find ALL second partial derivatives of f: fx, fy, fz, fxx, fyy, fzz, fxy, fxz,...
Please find ALL second partial derivatives of f: fx, fy, fz, fxx, fyy, fzz, fxy, fxz, and fyz For ?(?, ?, ?) = (?^?)(?^?)(?^?) THANK YOU
Let f(x, y) = 2x^3y^2 + 3xy^3 4x^3 y. Find (a) fx (c) fxx (b) fy...
Let f(x, y) = 2x^3y^2 + 3xy^3 4x^3 y. Find (a) fx (c) fxx (b) fy (d) fyy (e) fxy (f) fyx
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous....
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous. Let  h(t) = f (x(t), y(t))  where  x = 2e^ t  and  y = 2t. Suppose that  fx(2, 0) = 1,  fy(2, 0) = 3,  fxx(2, 0) = 4,  fyy(2, 0) = 1,  and  fxy(2, 0) = 4. Find   d ^2h/ dt ^2  when t = 0.
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous....
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous. Let  h(t) = f (x(t), y(t))  where  x = 3e ^t  and  y = 2t. Suppose that  fx(3, 0) = 2,  fy(3, 0) = 1,  fxx(3, 0) = 3,  fyy(3, 0) = 2,  and  fxy(3, 0) = 1. Find   d 2h dt 2  when t = 0.
​Suppose that the function f(x, y) has continuous partial derivatives fxx, fyy, and fxy at all...
​Suppose that the function f(x, y) has continuous partial derivatives fxx, fyy, and fxy at all points (x,y) near a critical points (a, b). Let D(x,y) = fxx(x, y)fyy(x,y) – (fxy(x,y))2 and suppose that D(a,b) > 0. ​(a) Show that fxx(a,b) < 0 if and only if fyy(a,b) < 0. ​(b) Show that fxx(a,b) > 0 if and only if fyy(a,b) > 0.
You are given that the function f(x,y)=8x2+y2+2x2y+3 has first partials fx(x,y)=16x+4xy and fy(x,y)=2y+2x2, and has second...
You are given that the function f(x,y)=8x2+y2+2x2y+3 has first partials fx(x,y)=16x+4xy and fy(x,y)=2y+2x2, and has second partials fxx(x,y)=16+4y, fxy(x,y)=4x and fyy(x,y)=2. Consider the point (0,0). Which one of the following statements is true? A. (0,0) is not a critical point of f(x,y). B. f(x,y) has a saddle point at (0,0). C. f(x,y) has a local maximum at (0,0). D. f(x,y) has a local minimum at (0,0). E. The second derivative test provides no information about the behaviour of f(x,y) at...
Given w=f(x,y,z) List all of the second and third derivatives. How many unique second derivatives? How...
Given w=f(x,y,z) List all of the second and third derivatives. How many unique second derivatives? How many unique third derivatives? Example: If z=f(x,y) , then z has 3 unique derivatives. fxx, fxy. fyy
Compute all second order partial derivatives of f(x, y) = x^4 − 2x ^3 y^2
Compute all second order partial derivatives of f(x, y) = x^4 − 2x ^3 y^2