Question

Consider the function f(x,y) = xe^((x^2)-(y^2)) (a) Find f(1,−1), fx(1,−1), fy(1,−1). Use these values to find...

Consider the function f(x,y) = xe^((x^2)-(y^2))

(a) Find f(1,−1), fx(1,−1), fy(1,−1). Use these values to find a linear approximation for f (1.1, −0.9).

(b) Find fxx(1, −1), fxy(1, −1), fyy(1, −1). Use these values to find a quadratic approximation for f(1.1,−0.9).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
part 1) Find the partial derivatives of the function f(x,y)=xsin(7x^6y): fx(x,y)= fy(x,y)= part 2) Find the...
part 1) Find the partial derivatives of the function f(x,y)=xsin(7x^6y): fx(x,y)= fy(x,y)= part 2) Find the partial derivatives of the function f(x,y)=x^6y^6/x^2+y^2 fx(x,y)= fy(x,y)= part 3) Find all first- and second-order partial derivatives of the function f(x,y)=2x^2y^2−2x^2+5y fx(x,y)= fy(x,y)= fxx(x,y)= fxy(x,y)= fyy(x,y)= part 4) Find all first- and second-order partial derivatives of the function f(x,y)=9ye^(3x) fx(x,y)= fy(x,y)= fxx(x,y)= fxy(x,y)= fyy(x,y)= part 5) For the function given below, find the numbers (x,y) such that fx(x,y)=0 and fy(x,y)=0 f(x,y)=6x^2+23y^2+23xy+4x−2 Answer: x= and...
(1 point) Find all the first and second order partial derivatives of f(x,y)=7sin(2x+y)−2cos(x−y) A. ∂f∂x=fx=∂f∂x=fx= B....
(1 point) Find all the first and second order partial derivatives of f(x,y)=7sin(2x+y)−2cos(x−y) A. ∂f∂x=fx=∂f∂x=fx= B. ∂f∂y=fy=∂f∂y=fy= C. ∂2f∂x2=fxx=∂2f∂x2=fxx= D. ∂2f∂y2=fyy=∂2f∂y2=fyy= E. ∂2f∂x∂y=fyx=∂2f∂x∂y=fyx= F. ∂2f∂y∂x=fxy=∂2f∂y∂x=fxy=
. For the function x,y=xarctan(xy) , compute fx , fy , fxx , fyy , and...
. For the function x,y=xarctan(xy) , compute fx , fy , fxx , fyy , and fxy
Let f(x, y) = 2x^3y^2 + 3xy^3 4x^3 y. Find (a) fx (c) fxx (b) fy...
Let f(x, y) = 2x^3y^2 + 3xy^3 4x^3 y. Find (a) fx (c) fxx (b) fy (d) fyy (e) fxy (f) fyx
Find fxx, fxy, fyy when f(x, y) = xe^(x^2−xy+y^2)
Find fxx, fxy, fyy when f(x, y) = xe^(x^2−xy+y^2)
Find all second partial derivatives of f : ?(?, ?, ?) = ?^??^??^? fx= fy= fz=...
Find all second partial derivatives of f : ?(?, ?, ?) = ?^??^??^? fx= fy= fz= fxx= fyy= fzz= fxy= fxz= fyz=
Let f(x,y,z)=exy4z5+xy2+y3z Calculate. fx fy fz fxx fxy fyy fxz fyz fzz fzyy fxxy fxxyz 1
Let f(x,y,z)=exy4z5+xy2+y3z Calculate. fx fy fz fxx fxy fyy fxz fyz fzz fzyy fxxy fxxyz 1
Please find ALL second partial derivatives of f: fx, fy, fz, fxx, fyy, fzz, fxy, fxz,...
Please find ALL second partial derivatives of f: fx, fy, fz, fxx, fyy, fzz, fxy, fxz, and fyz For ?(?, ?, ?) = (?^?)(?^?)(?^?) THANK YOU
You are given that the function f(x,y)=8x2+y2+2x2y+3 has first partials fx(x,y)=16x+4xy and fy(x,y)=2y+2x2, and has second...
You are given that the function f(x,y)=8x2+y2+2x2y+3 has first partials fx(x,y)=16x+4xy and fy(x,y)=2y+2x2, and has second partials fxx(x,y)=16+4y, fxy(x,y)=4x and fyy(x,y)=2. Consider the point (0,0). Which one of the following statements is true? A. (0,0) is not a critical point of f(x,y). B. f(x,y) has a saddle point at (0,0). C. f(x,y) has a local maximum at (0,0). D. f(x,y) has a local minimum at (0,0). E. The second derivative test provides no information about the behaviour of f(x,y) at...
Find fxx(x,y), fxy(x,y), fyx(x,y), and fyy(x,y) for the function f f(x,y)= 8xe3xy
Find fxx(x,y), fxy(x,y), fyx(x,y), and fyy(x,y) for the function f f(x,y)= 8xe3xy