Question

Let fx,y (x,y) = 3 e^-(x+y) for 0 < x <1/2y and y>0. a) Find f...

Let fx,y (x,y) = 3 e^-(x+y) for 0 < x <1/2y and y>0. a) Find f x(x) and f y( y) .  b) Write out the integral necessary to find , Fx,y ( u v) . DO NOT EVALUATE THE INTEGRAL.

Homework Answers

Answer #1

; 0 < x < 1/2; y > 0..

'

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f (x, y) = 100 sin(π(x−2y))/(1+x^2+y^2) . Find the directional derivative of f 1+x^2+y^2 at...
Let f (x, y) = 100 sin(π(x−2y))/(1+x^2+y^2) . Find the directional derivative of f 1+x^2+y^2 at the point (10, 6) in the direction of: (a) u = 3 i − 2 j (b) v = −i + 4 j
consider the joint density function Fx,y,za (x,y,z)=(x+y)e^(-z) where 0<x<1, 0<y<1, z>0 find the marginal density of...
consider the joint density function Fx,y,za (x,y,z)=(x+y)e^(-z) where 0<x<1, 0<y<1, z>0 find the marginal density of z : fz (z). hint. figure out which common distribution Z follows and report the rate parameter integral (x+y)e^(-z) dz (x+y)(-e^(-z) + C is my answer 1. ???
Let X and Y be continuous random variables with joint density function f(x,y) and marginal density...
Let X and Y be continuous random variables with joint density function f(x,y) and marginal density functions fX(x) and fY(y) respectively. Further, the support for both of these marginal density functions is the interval (0,1). Which of the following statements is always true? (Note there may be more than one)    E[X^2Y^3]=(∫0 TO 1 x^2 dx)(∫0 TO 1 y^3dy)    E[X^2Y^3]=∫0 TO 1∫0 TO 1x^2y^3 f(x,y) dy dx    E[Y^3]=∫0 TO 1 y^3 fX(x) dx   E[XY]=(∫0 TO 1 x fX(x)...
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y)...
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y) = 4/7 (xy − y), 4 < x < 5 and 0 < y < 1 (a) Find the marginal density fY (y). (b) Show that the marginal density, fY (y), integrates to 1 (i.e., it is a density.) (c) Find fX|Y (x|y), the conditional density of X given Y = y. (d) Show that fX|Y (x|y) is actually a pdf (i.e., it integrates...
1. for 0<= x <=3 0<=x<=1 f(x,y) = k(x^2y+ xy^2) a. Find K joint probablity density...
1. for 0<= x <=3 0<=x<=1 f(x,y) = k(x^2y+ xy^2) a. Find K joint probablity density function. b. Find marginal distribution respect to x c. Find the marginal distribution respect to y d. compute E(x) and E(y) e. compute E(xy) f. Find the covariance and interpret the result.
Let joint CDF Fx,y (x,y) = сxy(x2 + y2) for 0 ≤ x ≤ 1, 0...
Let joint CDF Fx,y (x,y) = сxy(x2 + y2) for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Find а) constant с. b) Fx|y (x|y) for x = 0.5, y = 0.5.  
Let s = f(x; y; z) and x = x(u; v; w); y = y(u; v;...
Let s = f(x; y; z) and x = x(u; v; w); y = y(u; v; w); z = z(u; v; w). To calculate ∂s ∂u (u = 1, v = 2, w = 3), which of the following pieces of information do you not need? I. f(1, 2, 3) = 5 II. f(7, 8, 9) = 6 III. x(1, 2, 3) = 7 IV. y(1, 2, 3) = 8 V. z(1, 2, 3) = 9 VI. fx(1, 2, 3)...
Let X and Y have joint density f given by f(x, y) = cxy 0 ≤...
Let X and Y have joint density f given by f(x, y) = cxy 0 ≤ y ≤ x, 0 ≤ x ≤ 1. (a) Determine the normalization constant c. (b) Determine P(X + 2Y ≤ 1). (c) Find E(X|Y = y). (d) Find E(X).
Ex-12.3 Let joint CDF FX,Y (x,y) = сxy(x^2 + y^2) for 0<=x<=1,  0<=y<=1. Find а) constant с....
Ex-12.3 Let joint CDF FX,Y (x,y) = сxy(x^2 + y^2) for 0<=x<=1,  0<=y<=1. Find а) constant с. b) Fx|y (X,Y) for x = 0.5, y = 0.5.
The real part of a f (z) complex function is given as (x,y)=y^3-3x^2y. Show the harmonic...
The real part of a f (z) complex function is given as (x,y)=y^3-3x^2y. Show the harmonic function u(x,y) and find the expressions v(x,y) and f(z). Calculate f'(1+2i) and write x+iy algebraically.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT