Question

In a gated S-R latch, what values of G, S and R produce Q = 1?...

In a gated S-R latch, what values of G, S and R produce Q = 1?

G = 0, S = 1, R = 0

G = 1, S = 1, R = 1

G = 0, S = 0, R = 1

G = 1, S = 0, R = 1

none of these

Homework Answers

Answer #1

For how SR latch works refer SR latch.

  S -> set output to '1'

  R -> reset output to '0'

  Q(t)   -> present state.

  Q(t+1) -> next state.

  Latch is always level triggered.

  When Clock(here is G)='0' , R' and S' is 0 .So, No change in the output occurs.

  When Clock='1' , R and S inputs are propagated and its a basic SR latch

operation.

So, you can verify for Q=1 , we should have Clock(G) is 1 and S=1, R=0

So the correct option is NONE OF THE ABOVE.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What is the correct meaning of the logical expression p→q∨r∧s ? ((p→q)∨r)∧s p→((q∨r)∧s) (p→(q∨r))∧s p→(q∨(r∧s))
What is the correct meaning of the logical expression p→q∨r∧s ? ((p→q)∨r)∧s p→((q∨r)∧s) (p→(q∨r))∧s p→(q∨(r∧s))
Five consecutive positive integers , p, q, r,s,t, each less than 10,000, produce a sum which...
Five consecutive positive integers , p, q, r,s,t, each less than 10,000, produce a sum which is a perfect square, while the sum q+ r + s is a perfect cube. What is the value of the square root of p+q+r+s+t ?
Triangle S R Q is shown. Angle S R Q is a right angle. An altitude...
Triangle S R Q is shown. Angle S R Q is a right angle. An altitude is drawn from point R to point T on side S Q to form a right angle. The length of T Q is 16 and the length of R Q is 20. What is the length of Line segment S R? 9 units 12 units 15 units 18 units
Prove a)p→q, r→s⊢p∨r→q∨s b)(p ∨ (q → p)) ∧ q ⊢ p
Prove a)p→q, r→s⊢p∨r→q∨s b)(p ∨ (q → p)) ∧ q ⊢ p
p → q, r → s ⊢ p ∨ r → q ∨ s Solve using...
p → q, r → s ⊢ p ∨ r → q ∨ s Solve using natural deduction rules.
Suppose g: P → Q and f: Q → R where P = {1, 2, 3,...
Suppose g: P → Q and f: Q → R where P = {1, 2, 3, 4}, Q = {a, b, c}, R = {2, 7, 10}, and f and g are defined by f = {(a, 10), (b, 7), (c, 2)} and g = {(1, b), (2, a), (3, a), (4, b)}. (a) Is Function f and g invertible? If yes find f −1 and    g −1 or if not why? (b) Find f o g and g o...
2. Let A = {p, q, r, s}, B = {k, l, m, n}, and C...
2. Let A = {p, q, r, s}, B = {k, l, m, n}, and C = {u, v, w}, Define f : A→B by f(p) = m, f(q) = k, f(r) = l, and f(s) = n, and define g : B→C by g(k) = v, g(l) = w, g(m) = u, and g(n) = w. Also define h : A→C by h = g ◦ f. (a) Write out the values of h. (b) Why is it that...
10.-Construct a connected bipartite graph that is not a tree with vertices Q,R,S,T,U,V,W. What is the...
10.-Construct a connected bipartite graph that is not a tree with vertices Q,R,S,T,U,V,W. What is the edge set? Construct a bipartite graph with vertices Q,R,S,T,U,V,W such that the degree of S is 4. What is the edge set? 12.-Construct a simple graph with vertices F,G,H,I,J that has an Euler trail, the degree of F is 1 and the degree of G is 3. What is the edge set? 13.-Construct a simple graph with vertices L,M,N,O,P,Q that has an Euler circuit...
Give direct and indirect proofs of: a. p → (q → r), ¬s ∨ p, q...
Give direct and indirect proofs of: a. p → (q → r), ¬s ∨ p, q ⇒ s → r. b. p → q, q → r, ¬(p ∧ r), p ∨ r ⇒ r
Are the statement forms P∨((Q∧R)∨ S) and ¬((¬ P)∧(¬(Q∧ R)∧ (¬ S))) logically equivalent? I found...
Are the statement forms P∨((Q∧R)∨ S) and ¬((¬ P)∧(¬(Q∧ R)∧ (¬ S))) logically equivalent? I found that they were not logically equivalent but wanted to check. Also, does the negation outside the parenthesis on the second statement form cancel out with the negation in front of P and in front of (Q∧ R)∧ (¬ S)) ?