Question

the fallowing question asks you to examine the motion of a hoola hoop traveling down an...

the fallowing question asks you to examine the motion of a hoola hoop traveling down an incline. The hoops center of mass is initially at some initial height zi and at the bottom of the ramp, the center of mass is zfoff the ground. The hoop has a radius R and mass m. The moment of inertia for a ring is I=mR2 The hoop travels down the hill without slipping. Consider the system being analyzed.

What is the work done by the friction on the hoopas it rolls down the hill. Justify your answer briefly. If friction does no work, what does it do tot he system? If it does do work, where does this work go?

Homework Answers

Answer #1

The dynamics of the rolling motion of the hoop rolling down a ramp can be analysed using the conservation of mechanical energy. And using the fact that the moment of inertia of the hoop is very high in comparison with other objects we can verify that the rotational kinetic energy of the hoop is maximum while it's translational kinetic energy is low. Now below I have used the conservation of energy to determine the expression for the acceleration of the hoop.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A very thin circular hoop of mass m and radius r rolls without slipping down a...
A very thin circular hoop of mass m and radius r rolls without slipping down a ramp inclined at an angle θ with the horizontal, as shown in the figure. What is the acceleration a of the center of the hoop?
A hoop I = M R2 starts from rest and rolls without slipping down an incline...
A hoop I = M R2 starts from rest and rolls without slipping down an incline with h = 7.0 m above a level floor. The translational center-of-mass speed vcm of the hoop on the level floor is
A solid sphere with a moment of inertia of I = 2/5 M R2 is rolled...
A solid sphere with a moment of inertia of I = 2/5 M R2 is rolled down an incline which is inclined at 24 degrees. The radius of the sphere is 1.6 meters. The initial velocity of the center of mass at the top of the incline is 2 m/s. As the sphere rolls without slipping down the incline, it makes 26 revolutions as it travels all the way down the incline. How long, in seconds, does it take to...
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R=...
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R= 0.5 m) are placed at the top of an incline at height (h= 10.0 m). The objects are released from rest and rolls down without slipping. a) The solid disk reaches to the bottom of the inclined plane before the hoop. explain why? b) Calculate the rotational inertia (moment of inertia) for the hoop. c) Calculate the rotational inertia (moment of inertia) for the...
A Brunswick bowling ball with mass M= 7kg and radius R=0.15m rolls from rest down a...
A Brunswick bowling ball with mass M= 7kg and radius R=0.15m rolls from rest down a ramp without slipping. The initial height of the incline is H= 2m. The moment of inertia of the ball is I=(2/5)MR2 What is the total kinetic energy of the bowling ball at the bottom of the incline? 684J 342J 235J 137J If the speed of the bowling ball at the bottom of the incline is V=5m/s, what is the rotational speed ω at the...
A large sphere rolls without slipping across a horizontal surface as shown. The sphere has a...
A large sphere rolls without slipping across a horizontal surface as shown. The sphere has a constant translational speed of 10. m/s, a mass of 7.3 kg (16 lb bowling ball), and a radius of 0.20 m. The moment of inertia of the sphere about its center is I = (2/5)mr2. The sphere approaches a 25° incline of height 3.0 m and rolls up the ramp without slipping. (a) Calculate the total energy, E, of the sphere as it rolls...
A wheel with a weight of 393 N comes off a moving truck and rolls without...
A wheel with a weight of 393 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 22.3 rad/s . The radius of the wheel is 0.628 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of habove the bottom of...
A wheel with a weight of 396 N comes off a moving truck and rolls without...
A wheel with a weight of 396 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 24.2 rad/s . The radius of the wheel is 0.597 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 395 N comes off a moving truck and rolls without...
A wheel with a weight of 395 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 26.1 rad/s . The radius of the wheel is 0.651 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 387 N comes off a moving truck and rolls without...
A wheel with a weight of 387 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 24.7 rad/s . The radius of the wheel is 0.592 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT