Consider a binomial probability distribution with p=0.65 and n=8. Determine the probabilities below.
a) P(x=2)
b) P(x<=1)
c) P (x >6)
We are given
n = 8, p = 0.65
Formula for binomial probability is given as below:
P(X=x) =nCx*p^x* (1 – p)^(n – x)
Part a
P(X=2) = 8C2*0.65^2*( 1 – 0.65)^(8 – 2)
P(X=2) = 28* 0.4225* 0.001838
P(X=2) = 0.021747
Required probability = 0.021747
Part b
P(X ≤ 1) = P(X=0) + P(X=1)
P(X=0) = 8C0*0.65^0*( 1 – 0.65)^(8 – 0)
P(X=0) = 1*1*0.000225
P(X=0) = 0.000225
P(X=1) = 8C1*0.65^1*( 1 – 0.65)^(8 – 1)
P(X=1) = 8*0.65*0.35^7
P(X=1) = 0.003346
P(X ≤ 1) = P(X=0) + P(X=1)
P(X ≤ 1) = 0.000225 + 0.003346
P(X ≤ 1) = 0.003571
Required probability = 0.003571
Part c
P(X>6) = P(X=7) + P(X=8)
P(X=7) = 8C7*0.65^7*( 1 – 0.65)^(8 – 7)
P(X=7) = 8*0.65^7*0.35^1
P(X=7) = 0.137262
P(X=8) = 8C8*0.65^8*( 1 – 0.65)^(8 – 8)
P(X=8) = 1*0.65^8*0.35^0
P(X=8) = 0.031864
P(X>6) = P(X=7) + P(X=8)
P(X>6) = 0.137262 + 0.031864
P(X>6) = 0.169126
Required probability = 0.169126
Get Answers For Free
Most questions answered within 1 hours.