Question

Prove a)p→q, r→s⊢p∨r→q∨s b)(p ∨ (q → p)) ∧ q ⊢ p

Prove

a)p→q, r→s⊢p∨r→q∨s

b)(p ∨ (q → p)) ∧ q ⊢ p

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove p ∨ (q ∧ r) ⇒ (p ∨ q) ∧ (p ∨ r) by constructing...
Prove p ∨ (q ∧ r) ⇒ (p ∨ q) ∧ (p ∨ r) by constructing a proof tree whose premise is p∨(q∧r) and whose conclusion is (p∨q)∧(p∨r).
Prove or disprove that [(p → q) ∧ (p → r)] and [p→ (q ∧ r)]...
Prove or disprove that [(p → q) ∧ (p → r)] and [p→ (q ∧ r)] are logically equivalent.
What is the correct meaning of the logical expression p→q∨r∧s ? ((p→q)∨r)∧s p→((q∨r)∧s) (p→(q∨r))∧s p→(q∨(r∧s))
What is the correct meaning of the logical expression p→q∨r∧s ? ((p→q)∨r)∧s p→((q∨r)∧s) (p→(q∨r))∧s p→(q∨(r∧s))
Prove ((P ∨ ¬Q) ∧ (¬P ∨ R)) → (Q → R) Hint: this starts with...
Prove ((P ∨ ¬Q) ∧ (¬P ∨ R)) → (Q → R) Hint: this starts with the usual setup for an implication, then repeatedly uses disjunctive syllogism.
Prove: (p ∧ ¬r → q) and p → (q ∨ r) are biconditional using natural...
Prove: (p ∧ ¬r → q) and p → (q ∨ r) are biconditional using natural deduction NOT TRUTH TABLE
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove...
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove R∪(S∩T) = (R∪S)∩(R∪T). 4.Consider the relation R={(x,y)∈R×R||x−y|≤1} on Z. Show that this relation is reflexive and symmetric but not transitive.
1) a.draw the truth table for s: (p and r) or (q and not r) b....
1) a.draw the truth table for s: (p and r) or (q and not r) b. assuming s and q are true but p is false, deduce the value of r. explain c. draw the truth table for s: r ---> not (p and q) d. assuming q is true, deduce the values of s, p, and r. Explain
Using rules of inference prove. (P -> R) -> ( (Q -> R) -> ((P v...
Using rules of inference prove. (P -> R) -> ( (Q -> R) -> ((P v Q) -> R) ) Justify each step using rules of inference.
Give direct and indirect proofs of: a. p → (q → r), ¬s ∨ p, q...
Give direct and indirect proofs of: a. p → (q → r), ¬s ∨ p, q ⇒ s → r. b. p → q, q → r, ¬(p ∧ r), p ∨ r ⇒ r
p → q, r → s ⊢ p ∨ r → q ∨ s Solve using...
p → q, r → s ⊢ p ∨ r → q ∨ s Solve using natural deduction rules.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT