Question

Q4. A hydraulic jump occurs fort the given flow conditions: discharge=20 m3/s, upstream channel geometry trapezoid...

Q4. A hydraulic jump occurs fort the given flow conditions: discharge=20 m3/s, upstream channel geometry trapezoid (upstream flow depth=100 cm, bottom width=100 cm, m=2), downstream channel geometry rectangular (width= 500 cm). Calculate downstream flow depth and power loss in the hydraulic jump.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
9. A sluice gate is placed across a wide rectangular channel. A hydraulic jump occurs downstream...
9. A sluice gate is placed across a wide rectangular channel. A hydraulic jump occurs downstream of the sluice gate. The specific discharge of flow in the channel is √30 (m2 /s). The flow depth downstream of the hydraulic jump is 2 m. The contraction coefficient of the sluice gate is 0.7. What is the sluice gate opening (w)? (g = 10 m/s2 ) a) 0.8 m b) 1 m c) 1.43 m d) 1.6 m e) None of above
6. An overflow spillway flows into a mild channel, producing a hydraulic jump. The channel is...
6. An overflow spillway flows into a mild channel, producing a hydraulic jump. The channel is rectangular, with Q = 100 ft3/s, bottom width b = 20 ft, and Manning's n = 0.015. The flow depth at the toe of the spillway is 0.4 ft and the approximate slope at the toe of the spillway is 0.1. The slope of the [mild] downstream channel, which functions as a stilling basin, is 0.0001. Calculate:  the critical depth,  the length...
Water flows in a rectangular concrete channel that is 10 m wide and has a slope...
Water flows in a rectangular concrete channel that is 10 m wide and has a slope of 0.005. The depth of the uniform flow in the channel (y1) is 450 mm and the discharge per width of the water is 2.2 m2/s. The downstream channel is smooth, and a hydraulic jump is forced to form in the channel by installing a sill. Calculate: (i) the depth and velocity of the water downstream of the hydraulic jump; (ii) the difference in...
A rectangular channel has a width of 9.8 m and a flow discharge of 48 m3/dt....
A rectangular channel has a width of 9.8 m and a flow discharge of 48 m3/dt. Slope of the channel bottom is 0.0018 and manning coefficient is 0.037. Calculate normal water depth and critical water depth
Water flows in a rectangular channel with bottom width 2.5 m at Q = 15 m3/s...
Water flows in a rectangular channel with bottom width 2.5 m at Q = 15 m3/s and y1 = 1.10 m. If the flow undergoes a hydraulic jump, calculate y2.
A discharge of 4.25 m3 /s occurs within a trapezoidal channel with a base width of...
A discharge of 4.25 m3 /s occurs within a trapezoidal channel with a base width of 3m, 3:1 side slopes (i.e. Z = 3), a longitudinal bed slope of 0.0009 m/m with a Manning’s roughness coefficient of 0.025 (i.e. sand). State the normal flow depth (yn) critical flow depth (yc) and the Froude Number of the flowing water.
A hydraulic jump is formed in a trapezoidal channel of 2.0-m bed width, 1:1 side slope,...
A hydraulic jump is formed in a trapezoidal channel of 2.0-m bed width, 1:1 side slope, and carrying a discharge of 6.0 m3/s. The initial and final depths of the jump are 0.5m and 2.0m, respectively. Concrete blocks are placed to stabilize the jump. Cf = 0.6. Construct the M-y diagram for the channel section. Find the critical depth.
The discharge in a channel with bottom width 3 m is 12 m3 s–1. If Manning’s...
The discharge in a channel with bottom width 3 m is 12 m3 s–1. If Manning’s n is 0.013 m-1/3 s and the streamwise slope is 1 in 200, find the normal depth if: (a) the channel has vertical sides (i.e. rectangular channel); (b) the channel is trapezoidal with side slopes 2H:1V. (Answer with steps plz)
A rectangular concrete channel with n=0.013 is to be constructed on 0.5% slope: 1. Design for...
A rectangular concrete channel with n=0.013 is to be constructed on 0.5% slope: 1. Design for a flow rate of Q=18 m^3/s. 2. A 30 cm high, 5 m long broad crested weir is placed in the channel. Calculate the depth upstream y1 and downstream y2 from the weir then get the head loss due to the hydraulic jump
Calculate the discharge (in m3/s) through an open channel where width of the channel is 3...
Calculate the discharge (in m3/s) through an open channel where width of the channel is 3 m and depth of flow is 7.8 m and average velocity of water flow is 1.46 m/s