Question

1.       A calorimeter contains 125g of water at 40.6*C. A 7.55 g object is 63.0C is...

1.       A calorimeter contains 125g of water at 40.6*C. A 7.55 g object is 63.0C is inside the calorimeter. When equilibrium is reached, the new temperature of water and the metal object is 42.6*C, determine the specific heat of the metal object.

2.       If the equivalence point was determined to be 7.6 for an acid base titration of acetic acid and sodium hydroxide, calculate the molarity of the acetic acid in the hot sauce if 6.00mL of 0.1 M NAOH was used for 1.5g of hot sauce. CH3COOH + NaOH -à CH3COONa + H2O

3.       ACID BASE OR SALT

Mg(OH2)            NaCl                   CaO                    HCl                      H2SO4               NaOH

4.       Calculate the % error if a student completes the molar mass of ethnol experiment and determine the molar mass to be 49.19 g/mol when the actual molar mass of ethanol is 46.07 g/mol

5.       Calculate the molar mass of a gas if 2.50g occupies 0.875L at 685mm Hg amd 35*C.

6.       What element has the following electron configuration?

7.       When .180 kg water is warmed from 20*C to 95*C how much heat energy, in Kj, is needed? Specific heat H20= 4.184 j/g*C

Homework Answers

Answer #1

1.

Mass of water

Specific heat of water

Temperature change

The heat gained by water

Mass of metal object

Specific heat of metal object

Temperature change

The heat lost by metal object

But, The heat gained by water heat lost by metal object

Hence, the specific heat of the metal object is .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A calorimeter contains 75.0 g of water at an initial temperature of 25.2 °C. 151.28 g...
A calorimeter contains 75.0 g of water at an initial temperature of 25.2 °C. 151.28 g of copper metal at a temperature of 95.5 °C was placed in the calorimeter. The equilibrium temperature was 36.2 °C. The molar heat capacity of water is 75.4 J / mol °C. Determine the molar heat capacity of the copper.
A calorimeter contains 33.0 mL of water at 15.0 ∘C . When 2.10 g of X...
A calorimeter contains 33.0 mL of water at 15.0 ∘C . When 2.10 g of X (a substance with a molar mass of 46.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
How does the temperature and specific heat capacity of a sample of water (the calorimeter) change...
How does the temperature and specific heat capacity of a sample of water (the calorimeter) change as a different mass or temperature of hot metal is added to it? How does the temperature and specific heat capacity of a sample of water (the calorimeter) change as the volume of water is changed? How does the molar enthalpy of dissolution change with the amount of substance added to water? How does the molar enthalpy of dissolution change with the volume of...
A calorimeter contains 30.0 mL of water at 11.5 ∘C . When 2.10 g of X...
A calorimeter contains 30.0 mL of water at 11.5 ∘C . When 2.10 g of X (a substance with a molar mass of 42.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A calorimeter contains 17.0 mL of water at 11.5 ∘C . When 1.60 g of X...
A calorimeter contains 17.0 mL of water at 11.5 ∘C . When 1.60 g of X (a substance with a molar mass of 79.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A calorimeter contains 35.0 mL of water at 15.0 ∘C . When 1.70 g of X...
A calorimeter contains 35.0 mL of water at 15.0 ∘C . When 1.70 g of X (a substance with a molar mass of 76.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 25.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A calorimeter contains 35.0 mL of water at 11.5 ∘C . When 1.30 g of X...
A calorimeter contains 35.0 mL of water at 11.5 ∘C . When 1.30 g of X (a substance with a molar mass of 66.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 29.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
Part A: A calorimeter contains 32.0 mL of water at 12.5 ∘C . When 1.80 g...
Part A: A calorimeter contains 32.0 mL of water at 12.5 ∘C . When 1.80 g of X (a substance with a molar mass of 72.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 27.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
Part A A calorimeter contains 35.0 mL of water at 12.5 ∘C . When 2.10 g...
Part A A calorimeter contains 35.0 mL of water at 12.5 ∘C . When 2.10 g of X (a substance with a molar mass of 79.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
Part A A calorimeter contains 21.0 mL of water at 11.0 ∘C . When 1.60 g...
Part A A calorimeter contains 21.0 mL of water at 11.0 ∘C . When 1.60 g of X (a substance with a molar mass of 72.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 26.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT