Question

A small stone of unknown mass is attached to the right end of a uniform 1.00-m...

A small stone of unknown mass is attached to the right end of a uniform 1.00-m long rod whose mass is 162 g. The combination of unknown mass and rod balances perfectly atop the triangular object when the triangular object is 20 cm from the right end.

What is the mass of the stone?

Homework Answers

Answer #1

The above problem can be solved using the principle of moments.

Consider the figure for the above question

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform, 245-N rod that is 2.10 m long carries a 225-N weight at its right...
A uniform, 245-N rod that is 2.10 m long carries a 225-N weight at its right end and an unknown weight W toward the left end (see the figure (Figure 1)). When W is placed 46.0 cm from the left end of the rod, the system just balances horizontally when the fulcrum is located 69.2 cm from the right end. W= 71.7 N If W is now moved 28.1 cm to the right, how far must the fulcrum be moved...
A uniform, 254-N rod that is 1.89 m long carries a 225-N weight at its right...
A uniform, 254-N rod that is 1.89 m long carries a 225-N weight at its right end and an unknown weight W toward the left end (see the figure (Figure 1)). When W is placed 42.0 cm from the left end of the rod, the system just balances horizontally when the fulcrum is located 69.2 cm from the right end. A) Find W. B) If W is now moved 29.3 cm to the right, how far must the fulcrum be...
A stick of mass M and length L is pivoted at one end. A small mass...
A stick of mass M and length L is pivoted at one end. A small mass m<M is attached to the right-hand end of the stick. The stick is held horizontally and released from rest. Given that the rotational inertia of a uniform rod pivoted around one end is 1/3ML^2, determine the rotational inertia of the described system. Calculate the angular velocity of the system when it reaches a vertical position. You cannot use rotational kinematics here because angular acceleration...
One end of a light uniform rod is attached to a wall by a frictionless hinge....
One end of a light uniform rod is attached to a wall by a frictionless hinge. The rod is held in a horizontal position by a wire that runs from the other end of the rod to the wall. The wire has length 2.00m and makes an angle of 30.0∘ with the rod. A block with mass m is suspended by a light rope attached to the middle of the rod. The transverse fundamental standing wave on the wire has...
A Pence consists of a 2 kg of stone attached to the end of a 4.5...
A Pence consists of a 2 kg of stone attached to the end of a 4.5 m long (Mass units) string. When the stone passes Its Lowest Point has the Speed 8,0 m/s. ( a) the speed of the stone as the string has a 60 ◦ angle against the vertical; ( B) which is the largest angle to the vertical surface of the string of the string during the rowing of the stone?
A thin uniform rod with mass m swings about an axis that passes through one end...
A thin uniform rod with mass m swings about an axis that passes through one end of the rod and is perpendicular to the plane of the swing. The rod swings with a period T and an angular amplitude of φm (assume this angle is sufficiently small to allow for the use of the equations in this chapter). (a) What is the length of the rod? (b) What is the maximum kinetic energy of the rod as it swings? State...
The figure shows a ball with mass m = 0.450 kg attached to the end of...
The figure shows a ball with mass m = 0.450 kg attached to the end of a thin rod with length L = 0.415 m and negligible mass. The other end of the rod is pivoted so that the ball can move in a vertical circle. The rod is held horizontally as shown and then given enough of a downward push to cause the ball to swing down and around and just reach the vertically upward position, with zero speed...
The figure shows a ball with mass m = 0.295 kg attached to the end of...
The figure shows a ball with mass m = 0.295 kg attached to the end of a thin rod with length L = 0.306 m and negligible mass. The other end of the rod is pivoted so that the ball can move in a vertical circle. The rod is held horizontally as shown and then given enough of a downward push to cause the ball to swing down and around and just reach the vertically upward position, with zero speed...
A uniform rod of mass mr = 173 g and length L = 1... A uniform...
A uniform rod of mass mr = 173 g and length L = 1... A uniform rod of mass mr = 173 g and length L = 100.0 cm is attached to the wall with a pin as shown. Cords are attached to the rod at the r1 = 10.0 cm and r2 = 90.0 cm mark, passed over pulleys, and masses of m1 = 246 g and m2 = 127 g are attached. Your TA asks you to determine...
A uniform rod of mass M and length L is pivoted at one end. The rod...
A uniform rod of mass M and length L is pivoted at one end. The rod is left to freely rotate under the influence of its own weight. Find its angular acceleration α when it makes an angle 30° with the vertical axis. Solve for M=1 Kg, L=1 m, take g=10 m s-2. Hint: Find the center of mass for the rod, and calculate the torque, then apply Newton as τ= Ι·α