Question

For the bimolecular collision 2HI à H2 + I2 the activation energy is 183 kJ/mol, d=...

For the bimolecular collision 2HI à H2 + I2 the activation energy is 183 kJ/mol, d= 3.5 A and the

            steric factor is 0.44.

Predict the value of the rate constant as a function of temperature.

Homework Answers

Answer #1

Dear friend your answer is

Thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The activation energy for the reaction H2(g) + I2(g) --> 2HI(g) is changed from 184 kJ/mol...
The activation energy for the reaction H2(g) + I2(g) --> 2HI(g) is changed from 184 kJ/mol to 59.0 kJ/mol at 600 K by the introduction of a Pt catalyst. Calculate the value of the ratio rate(catalyzed)/rate(uncatalyzed). A) 1.00 B) 7.62 x 10^10 C) 1.38 D) 0.321 E) none of these I know the answer is B, But I want a detail solution.
The energy of activation for the reaction 2 HI → H2 + I2 is 180. kJ·mol−1...
The energy of activation for the reaction 2 HI → H2 + I2 is 180. kJ·mol−1 at 556 K. Calculate the rate constant using the equation k = Ae^(−Ea/RT). The collision diameter for HI is 3.5 ✕ 10−8 cm. Assume that the pressure is 1.00 atm.
The decomposition of hydrogen iodide, 2HI(g)= H2(g)+I2(g), has a rate constant of 9.51*10-9 L/mol*s at 500K...
The decomposition of hydrogen iodide, 2HI(g)= H2(g)+I2(g), has a rate constant of 9.51*10-9 L/mol*s at 500K and Ea of 176 kJ/mol. At what temperature will the rate constant be 1.10*10-5 L/mol*s?
a.)A certain reaction has an activation energy of 25.10 kJ/mol. At what Kelvin temperature will the...
a.)A certain reaction has an activation energy of 25.10 kJ/mol. At what Kelvin temperature will the reaction proceed 7.00 times faster than it did at 289 K? b.A certain reaction has an enthalpy of ΔH = 39 kJ and an activation energy of Ea = 51 kJ. What is the activation energy of the reverse reaction? c.)At a given temperature, the elementary reaction A<=> B in the forward direction is the first order in A with a rate constant of...
The activation energy, Ea for a particular reaction is 13.6 kj/mol. If the rate constant at...
The activation energy, Ea for a particular reaction is 13.6 kj/mol. If the rate constant at 754 degrees celsius is 24.5/min at egat temperature in celsius will the rate constant be 12.7/min? r= 8.314j/mol • K
For the reaction H(g) + H2(g) ↔ (H-H-H)#→ H2(g) + H(g), activation energy Ea= 23 kJ/mol...
For the reaction H(g) + H2(g) ↔ (H-H-H)#→ H2(g) + H(g), activation energy Ea= 23 kJ/mol and the preexponential factor A = 1.5 x 1010 L mol-1s-1 at 298 K. Determine ∆H#, ∆S#, ∆G# and Kc#
The activation energy for a reaction is changed from 184 kJ/mol to 59.5 kJ/mol at 600....
The activation energy for a reaction is changed from 184 kJ/mol to 59.5 kJ/mol at 600. K by the introduction of a catalyst. If the uncatalyzed reaction takes about 2627 years to occur, about how long will the catalyzed reaction take? Assume the frequency factor A is constant and assume the initial concentrations are the same.
The activation energy of a certain reaction is 35.1 kJ/mol . At 25 ∘C , the...
The activation energy of a certain reaction is 35.1 kJ/mol . At 25 ∘C , the rate constant is 0.0160s−1. At what temperature in degrees Celsius would this reaction go twice as fast? Given that the initial rate constant is 0.0160s−1 at an initial temperature of 25  ∘C , what would the rate constant be at a temperature of 200.  ∘C for the same reaction described in Part A?
1) A first order reaction has an activation energy of 66.6 kJ/mol and a frequency factor...
1) A first order reaction has an activation energy of 66.6 kJ/mol and a frequency factor (Arrhenius constant) of 8.78 x 1010 sec -1. Calculate the rate constant at 19 oC. Use 4 decimal places for your answer. 2) A first order reaction has a rate constant of 0.988 at 25 oC and 9.6 at 33 oC. Calculate the value of the activation energy in KILOJOULES (enter answer to one decimal place)
A)The activation energy of a certain reaction is 33.8 kJ/mol . At 30  ∘C , the rate...
A)The activation energy of a certain reaction is 33.8 kJ/mol . At 30  ∘C , the rate constant is 0.0170s−1. At what temperature in degrees Celsius would this reaction go twice as fast? B)Given that the initial rate constant is 0.0170s−1 at an initial temperature of 30 ∘C , what would the rate constant be at a temperature of 200. ∘C for the same reaction described in Part A?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT