Question

The activation energy for the reaction H2(g) + I2(g) --> 2HI(g) is changed from 184 kJ/mol...

The activation energy for the reaction H2(g) + I2(g) --> 2HI(g) is changed from 184 kJ/mol to 59.0 kJ/mol at 600 K by the introduction of a Pt catalyst. Calculate the value of the ratio rate(catalyzed)/rate(uncatalyzed).

A) 1.00

B) 7.62 x 10^10

C) 1.38

D) 0.321

E) none of these

I know the answer is B, But I want a detail solution.

Homework Answers

Answer #2

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The activation energy for a reaction is changed from 184 kJ/mol to 59.5 kJ/mol at 600....
The activation energy for a reaction is changed from 184 kJ/mol to 59.5 kJ/mol at 600. K by the introduction of a catalyst. If the uncatalyzed reaction takes about 2627 years to occur, about how long will the catalyzed reaction take? Assume the frequency factor A is constant and assume the initial concentrations are the same.
For the bimolecular collision 2HI à H2 + I2 the activation energy is 183 kJ/mol, d=...
For the bimolecular collision 2HI à H2 + I2 the activation energy is 183 kJ/mol, d= 3.5 A and the             steric factor is 0.44. Predict the value of the rate constant as a function of temperature.
The activation energy of a certain uncatalyzed reaction is 64 kJ/mol. In the presence of a...
The activation energy of a certain uncatalyzed reaction is 64 kJ/mol. In the presence of a catalyst, the Ea is 55 kJ/mol. How many times faster is the catalyzed than the uncatalyzed reaction at 400°C? Assume that the frequency factor remains the same.
A catalyst decreases the activation energy of a particular exothermic reaction by 58 kJ/mol, to 24...
A catalyst decreases the activation energy of a particular exothermic reaction by 58 kJ/mol, to 24 kJ/mol. Assuming that the mechanism has only one step, and that the products are 89 kJ lower in energy than the reactants, sketch approximate energy-level diagrams for the catalyzed and uncatalyzed reactions. What is the activation energy for the uncatalyzed reverse reaction? (Please Show Work)
Suppose that a catalyst lowers the activation barrier of a reaction from 122 kJ/mol to 57...
Suppose that a catalyst lowers the activation barrier of a reaction from 122 kJ/mol to 57 kJ/mol . By what factor would you expect the reaction rate to increase at 25 ∘C? (Assume that the frequency factors for the catalyzed and uncatalyzed reactions are identical.) Express your answer using two significant figures.
At a certain temperature, the equilibrium constant, Kc for this reaction is 53.3. H2(g)+I2(g) = 2HI(g)...
At a certain temperature, the equilibrium constant, Kc for this reaction is 53.3. H2(g)+I2(g) = 2HI(g) At this temperature, 0.300 mol of H2 and 0.300 mol of I2 were placed in a 1.00 L container to react. What concentration of HI is present at equilibrium? View comments (1)
The decomposition of hydrogen iodide, 2HI(g)= H2(g)+I2(g), has a rate constant of 9.51*10-9 L/mol*s at 500K...
The decomposition of hydrogen iodide, 2HI(g)= H2(g)+I2(g), has a rate constant of 9.51*10-9 L/mol*s at 500K and Ea of 176 kJ/mol. At what temperature will the rate constant be 1.10*10-5 L/mol*s?
For the reaction H(g) + H2(g) ↔ (H-H-H)#→ H2(g) + H(g), activation energy Ea= 23 kJ/mol...
For the reaction H(g) + H2(g) ↔ (H-H-H)#→ H2(g) + H(g), activation energy Ea= 23 kJ/mol and the preexponential factor A = 1.5 x 1010 L mol-1s-1 at 298 K. Determine ∆H#, ∆S#, ∆G# and Kc#
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.325 M HI, 4.36×10-2 M H2 and 4.36×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 2.27×10-2 mol of I2(g) is added to the flask? [HI] = _____M [H2] = ____M [I2] = _____M
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) --> H2(g)...
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) --> H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.322 M HI,   4.33×10-2 M H2 and 4.33×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.213 mol of HI(g) is added to the flask? [HI] = M [H2] = M [I2] = M
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT