Question

For the reaction H(g) + H2(g) ↔ (H-H-H)#→ H2(g) + H(g), activation energy Ea= 23 kJ/mol...

For the reaction H(g) + H2(g) ↔ (H-H-H)#→ H2(g) + H(g), activation energy Ea= 23 kJ/mol and the preexponential factor A = 1.5 x 1010 L mol-1s-1 at 298 K. Determine ∆H#, ∆S#, ∆G# and Kc#

Homework Answers

Answer #1

Kc# = A .e^-Ea/RT

        = (1.5 x10^10)   x e^-23 / (8.314 x 10^-3 x 298)

        = 1.39 x 10^6 L mol-1s-1

∆G#    = - R T ln Kc#

            = -8.314 x 10^-3 x 298 x ln (1.39 x 10^6)

            = - 35 .05 kJ /mol

∆H# = Ea

         = 23 kJ /mol

∆G#   = ∆H# - T ∆S#

-35.05 x 10^3 = 23 x 10^3 - 298 x ∆S#

∆S# = 194.8 J / mol K

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A certain reaction has an activation energy of 60.0 kJ/mol and a frequency factor of A1...
A certain reaction has an activation energy of 60.0 kJ/mol and a frequency factor of A1 = 2.80×1012 M−1s−1 . What is the rate constant, k, of this reaction at 30.0 ∘C ? I tried k = Ae^(-Ea/RT) but it's giving me 1.26E2 M^-1s^-1 which is wrong on my online homework, I did convert C to K and kJ/mol to J.
A certain reaction has an activation energy of 66.0 kJ/mol and a frequency factor of A1...
A certain reaction has an activation energy of 66.0 kJ/mol and a frequency factor of A1 = 8.30×1012 M−1s−1 . What is the rate constant, k, of this reaction at 27.0 ∘C ? An unknown reaction was observed, and the following data were collected: T (K) k (M−1⋅s−1) 352 109 426 185 Determine the activation energy for this reaction.
For the reaction C(s) + H2O(g) CO(g) + H2(g) H° = 133.3 kJ/mol and S° =...
For the reaction C(s) + H2O(g) CO(g) + H2(g) H° = 133.3 kJ/mol and S° = 121.6 J/K mol at 298 K. At temperatures greater than ________ °C this reaction is spontaneous under standard conditions.
The activation energy, Ea for a particular reaction is 13.6 kj/mol. If the rate constant at...
The activation energy, Ea for a particular reaction is 13.6 kj/mol. If the rate constant at 754 degrees celsius is 24.5/min at egat temperature in celsius will the rate constant be 12.7/min? r= 8.314j/mol • K
The activation energy for the reaction H2(g) + I2(g) --> 2HI(g) is changed from 184 kJ/mol...
The activation energy for the reaction H2(g) + I2(g) --> 2HI(g) is changed from 184 kJ/mol to 59.0 kJ/mol at 600 K by the introduction of a Pt catalyst. Calculate the value of the ratio rate(catalyzed)/rate(uncatalyzed). A) 1.00 B) 7.62 x 10^10 C) 1.38 D) 0.321 E) none of these I know the answer is B, But I want a detail solution.
A certain reaction has an activation energy of 64.0 kJ/mol and a frequency factor of A1...
A certain reaction has an activation energy of 64.0 kJ/mol and a frequency factor of A1 = 5.70×1012 M−1s−1 . What is the rate constant, k , of this reaction at 20.0 ∘C ? Express your answer with the appropriate units. Indicate the multiplication of units explicitly either with a multiplication dot (asterisk) or a dash. Part B An unknown reaction was observed, and the following data were collected: T (K ) k (M−1⋅s−1 ) 352 109 426 185 Determine...
1.) The reaction C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol. At 600.0 K the rate...
1.) The reaction C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol. At 600.0 K the rate constant is 6.1×10−8 s−1. What is the value of the rate constant at 860.0 K? ?=_____ s−1 2.) A certain reaction has an activation energy of 47.01 kJ/mol. At what Kelvin temperature will the reaction proceed 7.50 times faster than it did at 357 K? ____ K 3.) Consider this reaction data. A⟶products T (K) k (s–1) 275 0.383 875 0.659 If you were...
The activation energy of a reaction is 55.6 kJ/mol and the frequency factor is 1.5×1011/s. Calculate...
The activation energy of a reaction is 55.6 kJ/mol and the frequency factor is 1.5×1011/s. Calculate the rate constant of the reaction at 23 ∘C. Express your answer using two significant figures.
The activation energy of a certain uncatalyzed reaction is 64 kJ/mol. In the presence of a...
The activation energy of a certain uncatalyzed reaction is 64 kJ/mol. In the presence of a catalyst, the Ea is 55 kJ/mol. How many times faster is the catalyzed than the uncatalyzed reaction at 400°C? Assume that the frequency factor remains the same.
The standard free energy of activation of a reaction A is 88.2 kJ mol–1 (21.1 kcal...
The standard free energy of activation of a reaction A is 88.2 kJ mol–1 (21.1 kcal mol–1) at 298 K. Reaction B is ten million times faster than reaction A at the same temperature. The products of each reaction are 10.0 kJ mol–1 (2.39 kcal mol–1) more stable than the reactants. (a) What is the standard free energy of activation of reaction B? (b) What is the standard free energy of activation of the reverse of reaction A? (c) What...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT