Question

Let H be a reflexive relation on A. Prove that all relation R on A. It...

Let H be a reflexive relation on A. Prove that all relation R on A. It is true that R ⊆ H ◦ R and R ⊆ R ◦ H.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R be a relation on A. Suppose that dom(R) = A and R^(-1)∘R⊆R. Prove that...
Let R be a relation on A. Suppose that dom(R) = A and R^(-1)∘R⊆R. Prove that R is reflexive on A.
5. Prove or disprove the following statements: (a) Let R be a relation on the set...
5. Prove or disprove the following statements: (a) Let R be a relation on the set Z of integers such that xRy if and only if xy ≥ 1. Then, R is irreflexive. (b) Let R be a relation on the set Z of integers such that xRy if and only if x = y + 1 or x = y − 1. Then, R is irreflexive. (c) Let R and S be reflexive relations on a set A. Then,...
Let A be the set of all integers, and let R be the relation "m divides...
Let A be the set of all integers, and let R be the relation "m divides n." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
Let A be the set of all real numbers, and let R be the relation "less...
Let A be the set of all real numbers, and let R be the relation "less than." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
Let A be the set of all lines in the plane. Let the relation R be...
Let A be the set of all lines in the plane. Let the relation R be defined as: “l​1​ R l​2​ ⬄ l​1​ intersects l​2​.” Determine whether S is reflexive, symmetric, or transitive. If the answer is “yes,” give a justification (full proof is not needed); if the answer is “no” you ​must give a counterexample.
Let H be a group acting on A. Prove that the relation ∼ on A defined...
Let H be a group acting on A. Prove that the relation ∼ on A defined by a ∼ b if and only if a = hb for some h ∈ H is an equivalence relation.
Disprove: The following relation R on set Q is either reflexive, symmetric, or transitive. Let t...
Disprove: The following relation R on set Q is either reflexive, symmetric, or transitive. Let t and z be elements of Q. then t R z if and only if t = (z+1) * n for some integer n.
A relation R on a set A is called circular if for all a,b,c in A,...
A relation R on a set A is called circular if for all a,b,c in A, aRb and bRc imply cRa. Prove that a relation is an equivalence relation iff it is reflexive and circular.
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation...
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation R on Z where (?, ?) ∈ ? if ? = ? . The relation R on the set of all subsets of {1, 2, 3, 4} where SRT means S C T.
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite sets of integers. Let R be the relation on F defined by A R B if and only if |A| = |B|. (a) Prove or disprove: R is reflexive. (b) Prove or disprove: R is irreflexive. (c) Prove or disprove: R is symmetric. (d) Prove or disprove: R is antisymmetric. (e) Prove or disprove: R is transitive. (f) Is R an equivalence relation? Is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT