Question

Let A be the set of all real numbers, and let R be the relation "less...

Let A be the set of all real numbers, and let R be the relation "less than." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A be the set of all integers, and let R be the relation "m divides...
Let A be the set of all integers, and let R be the relation "m divides n." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
the relation R on the set of all people where aRb means that a is younger...
the relation R on the set of all people where aRb means that a is younger than b. Determine if R is: reflexive symmetric transitive antisymmetric
Determine whether the binary relation R on {a, b, c}   where R={(a, a), (b, b)), (c,...
Determine whether the binary relation R on {a, b, c}   where R={(a, a), (b, b)), (c, c), (a, b), (a, c), (c, b) } is: a. reflexive, antisymmetric, symmetric b. transitive, symmetric, antisymmetric c. antisymmetric, reflexive, transitive d. symmetric, reflexive, transitive
Let A be the set of all lines in the plane. Let the relation R be...
Let A be the set of all lines in the plane. Let the relation R be defined as: “l​1​ R l​2​ ⬄ l​1​ intersects l​2​.” Determine whether S is reflexive, symmetric, or transitive. If the answer is “yes,” give a justification (full proof is not needed); if the answer is “no” you ​must give a counterexample.
Construct a binary relation R on a nonempty set A satisfying the given condition, justify your...
Construct a binary relation R on a nonempty set A satisfying the given condition, justify your solution. (a) R is an equivalence relation. (b) R is transitive, but not symmetric. (c) R is neither symmetric nor reflexive nor transitive. (d) (5 points) R is antisymmetric and symmetric.
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation...
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation R on Z where (?, ?) ∈ ? if ? = ? . The relation R on the set of all subsets of {1, 2, 3, 4} where SRT means S C T.
2. Let R be a relation on the set of integers ℤ defined by ? =...
2. Let R be a relation on the set of integers ℤ defined by ? = {(?, ?): a2 + ?2 ?? ? ??????? ??????} Is this relation reflexive? Symmetric? transitive?
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite sets of integers. Let R be the relation on F defined by A R B if and only if |A| = |B|. (a) Prove or disprove: R is reflexive. (b) Prove or disprove: R is irreflexive. (c) Prove or disprove: R is symmetric. (d) Prove or disprove: R is antisymmetric. (e) Prove or disprove: R is transitive. (f) Is R an equivalence relation? Is...
Let R be the relation on the set of real numbers such that xRy if and...
Let R be the relation on the set of real numbers such that xRy if and only if x and y are real numbers that differ by less than 1, that is, |x − y| < 1. Which of the following pair or pairs can be used as a counterexample to show this relation is not an equivalence relation? A) (1, 1) B) (1, 1.8), (1.8, 3) C) (1, 1), (3, 3) D) (1, 1), (1, 1.5)
Consider the relation R defined on the real line R, and defined as follows: x ∼...
Consider the relation R defined on the real line R, and defined as follows: x ∼ y if and only if the distance from the point x to the point y is less than 3. Study if this relation is reflexive, symmetric, and transitive. Which points are related to 2?