Let
A be the set of all real numbers, and let R be the relation "less...
Let
A be the set of all real numbers, and let R be the relation "less
than." Determine whether or not the given relation R, on the set A,
is reflexive, symmetric, antisymmetric, or transitive.
Determine whether the binary relation R on {a, b,
c} where R={(a, a), (b, b)), (c,...
Determine whether the binary relation R on {a, b,
c} where R={(a, a), (b, b)), (c, c), (a, b), (a,
c), (c, b) } is:
a.
reflexive, antisymmetric, symmetric
b.
transitive, symmetric, antisymmetric
c.
antisymmetric, reflexive, transitive
d.
symmetric, reflexive, transitive
Let A be the set of all lines in the plane. Let the relation R
be...
Let A be the set of all lines in the plane. Let the relation R
be defined as:
“l1 R l2 ⬄ l1 intersects
l2.” Determine whether S is reflexive, symmetric, or
transitive. If the answer is “yes,” give a justification (full
proof is not needed); if the answer is “no” you must give a
counterexample.
Construct a binary relation R on a nonempty set A satisfying the
given condition, justify your...
Construct a binary relation R on a nonempty set A satisfying the
given condition, justify your solution.
(a) R is an equivalence relation.
(b) R is transitive, but not symmetric.
(c) R is neither symmetric nor reflexive nor transitive.
(d) (5 points) R is antisymmetric and symmetric.
Determine whether the relation R is reflexive, symmetric,
antisymmetric, and/or transitive [4 Marks]
22
The relation...
Determine whether the relation R is reflexive, symmetric,
antisymmetric, and/or transitive [4 Marks]
22
The relation R on Z where (?, ?) ∈ ? if ? = ? .
The relation R on the set of all subsets of {1, 2, 3, 4} where
SRT means S C T.
For each of the following relations on the set of all integers,
determine whether the...
For each of the following relations on the set of all integers,
determine whether the relation is reflexive, symmetric, and/or
transitive:
(?, ?) ∈ ? if and only if ? < ?.
(?, ?) ∈ ? if and only ?? ≥ 1.
(?, ?) ∈ ? if and only ? = −?.
(?, ?) ∈ ? if and only ? = |?|.