Question

Disprove: The following relation R on set Q is either reflexive, symmetric, or transitive. Let t...

Disprove: The following relation R on set Q is either reflexive, symmetric, or transitive. Let t and z be elements of Q. then t R z if and only if t = (z+1) * n for some integer n.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation...
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation R on Z where (?, ?) ∈ ? if ? = ? . The relation R on the set of all subsets of {1, 2, 3, 4} where SRT means S C T.
5. Prove or disprove the following statements: (a) Let R be a relation on the set...
5. Prove or disprove the following statements: (a) Let R be a relation on the set Z of integers such that xRy if and only if xy ≥ 1. Then, R is irreflexive. (b) Let R be a relation on the set Z of integers such that xRy if and only if x = y + 1 or x = y − 1. Then, R is irreflexive. (c) Let R and S be reflexive relations on a set A. Then,...
The subgroup relation ≤ on the set of subgroups G is reflexive, transitive, and anti-symmetric.
The subgroup relation ≤ on the set of subgroups G is reflexive, transitive, and anti-symmetric.
Consider the relation R= {(1,2),(2,2),(2,3),(3,1),(3,3)}. Is R transitive, not reflexive, symmetric or equivalence relation?
Consider the relation R= {(1,2),(2,2),(2,3),(3,1),(3,3)}. Is R transitive, not reflexive, symmetric or equivalence relation?
Let A be the set of all integers, and let R be the relation "m divides...
Let A be the set of all integers, and let R be the relation "m divides n." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite sets of integers. Let R be the relation on F defined by A R B if and only if |A| = |B|. (a) Prove or disprove: R is reflexive. (b) Prove or disprove: R is irreflexive. (c) Prove or disprove: R is symmetric. (d) Prove or disprove: R is antisymmetric. (e) Prove or disprove: R is transitive. (f) Is R an equivalence relation? Is...
Let A be the set of all real numbers, and let R be the relation "less...
Let A be the set of all real numbers, and let R be the relation "less than." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
2. Let R be a relation on the set of integers ℤ defined by ? =...
2. Let R be a relation on the set of integers ℤ defined by ? = {(?, ?): a2 + ?2 ?? ? ??????? ??????} Is this relation reflexive? Symmetric? transitive?
a) Let R be an equivalence relation defined on some set A. Prove using induction that...
a) Let R be an equivalence relation defined on some set A. Prove using induction that R^n is also an equivalence relation. Note: In order to prove transitivity, you may use the fact that R is transitive if and only if R^n⊆R for ever positive integer ​n b) Prove or disprove that a partial order cannot have a cycle.
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x,...
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x, y) ∈ R if and only if x + 2 > y. For example, (4, 3) is in R because 4 + 2 = 6, which is greater than 3. (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.