Question

Prove if f is continuous on [a,b] then f is bounded below and f has a...

Prove
if f is continuous on [a,b] then f is bounded below and f has a minimum on [a,b].

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f : [a, b] → R be bounded, and assume that f is continuous on...
Let f : [a, b] → R be bounded, and assume that f is continuous on [a, b). Prove that f is integrable on [a, b].
Prove the IVT theorem Prove: If f is continuous on [a,b] and f(a),f(b) have different signs...
Prove the IVT theorem Prove: If f is continuous on [a,b] and f(a),f(b) have different signs then there is an r ∈ (a,b) such that f(r) = 0. Using the claims: f is continuous on [a,b] there exists a left sequence (a_n) that is increasing and bounded and converges to r, and left decreasing sequence and bounded (b_n)=r. limf(a_n)= r= limf(b_n), and f(r)=0.
2. Suppose [a, b] is a closed bounded interval. If f : [a, b] → R...
2. Suppose [a, b] is a closed bounded interval. If f : [a, b] → R is a continuous function, then prove f has an absolute minimum on [a, b].
show that if f is a bounded increasing continuous function on (a,b), then f is uniformly...
show that if f is a bounded increasing continuous function on (a,b), then f is uniformly continuous. Hint: Extend the function to [a,b].
Suppose f : [a, b] → [a, b] is a continuous function. Prove that it has...
Suppose f : [a, b] → [a, b] is a continuous function. Prove that it has a fixed point x (that is, a point x such that f(x) = x).
Suppose A is bounded and not compact. Prove that there is a function that is continuous...
Suppose A is bounded and not compact. Prove that there is a function that is continuous on A, but not uniformly continuous. Give an example of a set that is not compact, but every function continuous on that set is uniformly continuous.
Let 0 < a < b < ∞. Let f : [a, ∞) → R continuous...
Let 0 < a < b < ∞. Let f : [a, ∞) → R continuous R at [a, b] and f decreasing on [b, ∞). Prove that f is bounded above.
Suppose f is differentiable on a bounded interval (a,b) but f is unbounded there. Prove that...
Suppose f is differentiable on a bounded interval (a,b) but f is unbounded there. Prove that f' is also unbounded in (a,b). Is the converse true?
We know that any continuous function f : [a, b] → R is uniformly continuous on...
We know that any continuous function f : [a, b] → R is uniformly continuous on the finite closed interval [a, b]. (i) What is the definition of f being uniformly continuous on its domain? (This definition is meaningful for functions f : J → R defined on any interval J ⊂ R.) (ii) Given a differentiable function f : R → R, prove that if the derivative f ′ is a bounded function on R, then f is uniformly...
Prove using Mean Value Theorem that if f' is bounded then f is bounded too.
Prove using Mean Value Theorem that if f' is bounded then f is bounded too.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT