Question

Prove the IVT theorem Prove: If f is continuous on [a,b] and f(a),f(b) have different signs...

Prove the IVT theorem

Prove: If f is continuous on [a,b] and f(a),f(b) have different signs then there is an r ∈ (a,b) such that f(r) = 0.

Using the claims:

f is continuous on [a,b]

there exists a left sequence (a_n) that is increasing and bounded and converges to r, and left decreasing sequence and bounded (b_n)=r.

limf(a_n)= r= limf(b_n), and f(r)=0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let 0 < a < b < ∞. Let f : [a, ∞) → R continuous...
Let 0 < a < b < ∞. Let f : [a, ∞) → R continuous R at [a, b] and f decreasing on [b, ∞). Prove that f is bounded above.
Recall the Mean Value Theorem: If f : [a, b] → R is continuous on [a,...
Recall the Mean Value Theorem: If f : [a, b] → R is continuous on [a, b], and differentiable on (a, b), then there exists c ∈ (a, b) such that f(b) − f(a) = f 0 (c)(b − a). Show that this is generally not true for vector-valued functions by showing that for r(t) = costi + sin tj + tk, there is no c ∈ (0, 2π) such that r(2π) − r(0) = 2πr 0 (c).
Prove Dirichlet Function is not continuous everywhere using the claims: f is not continuous at c...
Prove Dirichlet Function is not continuous everywhere using the claims: f is not continuous at c in D if (x_n) is in D and (x_n) converge to c, then (f(x_n)) does not converges to f(c).
Prove the following theorem: Theorem. Let a ∈ R and let f be a function defined...
Prove the following theorem: Theorem. Let a ∈ R and let f be a function defined on an interval centred at a. IF f is continuous at a and f(a) > 0 THEN f is strictly positive on some interval centred at a.
Prove if f is continuous on [a,b] then f is bounded below and f has a...
Prove if f is continuous on [a,b] then f is bounded below and f has a minimum on [a,b].
Let f : [a, b] → R be bounded, and assume that f is continuous on...
Let f : [a, b] → R be bounded, and assume that f is continuous on [a, b). Prove that f is integrable on [a, b].
Let f1 be a continuous function with different signs at a,b, with a < b and...
Let f1 be a continuous function with different signs at a,b, with a < b and let {pn}∞ n=1 be bisection method’s sequence of approximations on f1 using starting interval [a,b]. Let f2 be a continuous function with different signs at a,b, with a < b and let {qn}∞ n=1 be bisection method’s sequence of approximations on f2 using starting interval [a,b]. (a) Prove (perhaps by induction) if pk = qk, for some k, then pi = qi for all...
We know that any continuous function f : [a, b] → R is uniformly continuous on...
We know that any continuous function f : [a, b] → R is uniformly continuous on the finite closed interval [a, b]. (i) What is the definition of f being uniformly continuous on its domain? (This definition is meaningful for functions f : J → R defined on any interval J ⊂ R.) (ii) Given a differentiable function f : R → R, prove that if the derivative f ′ is a bounded function on R, then f is uniformly...
6. Let a < b and let f : [a, b] → R be continuous. (a)...
6. Let a < b and let f : [a, b] → R be continuous. (a) Prove that if there exists an x0 ∈ [a, b] for which f(x0) 6= 0, then Z b a |f(x)|dxL > 0. (b) Use (a) to conclude that if Z b a |f(x)|dx = 0, then f(x) := 0 for all x ∈ [a, b].
Let a < b, a, b, ∈ R, and let f : [a, b] → R...
Let a < b, a, b, ∈ R, and let f : [a, b] → R be continuous such that f is twice differentiable on (a, b), meaning f is differentiable on (a, b), and f' is also differentiable on (a, b). Suppose further that there exists c ∈ (a, b) such that f(a) > f(c) and f(c) < f(b). prove that there exists x ∈ (a, b) such that f'(x)=0. then prove there exists z ∈ (a, b) such...