Question

Suppose f is differentiable on a bounded interval (a,b) but f is unbounded there. Prove that...

Suppose f is differentiable on a bounded interval (a,b) but f is unbounded there. Prove that f' is also unbounded in (a,b). Is the converse true?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let I be an interval. Prove that if f is differentiable on I and if the...
Let I be an interval. Prove that if f is differentiable on I and if the derrivative f' be bounded on I then f uniformly continued on I!
Let f : R → R be a bounded differentiable function. Prove that for all ε...
Let f : R → R be a bounded differentiable function. Prove that for all ε > 0 there exists c ∈ R such that |f′(c)| < ε.
2. Suppose [a, b] is a closed bounded interval. If f : [a, b] → R...
2. Suppose [a, b] is a closed bounded interval. If f : [a, b] → R is a continuous function, then prove f has an absolute minimum on [a, b].
Theorem 4 states “If f is differentiable at a, then f is continuous at a.” Is...
Theorem 4 states “If f is differentiable at a, then f is continuous at a.” Is the converse also true? Specifically, is the statement “If f is continuous at a, then f is differentiable at a” also true? Defend your reasoning and/or provide an example or counterexample (Hint: Can you find a graphical depiction in the text that shows a continuous function at a point that is not differentiable at that point?)
suppose f is a differentiable function on interval (a,b) with f'(x) not equal to 1. show...
suppose f is a differentiable function on interval (a,b) with f'(x) not equal to 1. show that there exists at most one point c in the interval (a,b) such that f(c)=c
if the function f is differentiable at a, prove the function f is also continuous at...
if the function f is differentiable at a, prove the function f is also continuous at a.
PROVE USING IVT. Suppose f is a differentiable function on [s,t] and suppose f'(s) > 0...
PROVE USING IVT. Suppose f is a differentiable function on [s,t] and suppose f'(s) > 0 > f'(t). Then there's a point p in (s,t) where f'(p)=0.
5. Let I be an open interval with a ∈ I and suppose that f is...
5. Let I be an open interval with a ∈ I and suppose that f is a function defined on I\{a} where the limit of f exists as x → a and L = limx→a f(x). Prove that the limit of |f| exists as x → a and |L| = limx→a |f(x)|. Is the converse true? Prove or furnish a counterexample.
Let f: R --> R be a differentiable function such that f' is bounded. Show that...
Let f: R --> R be a differentiable function such that f' is bounded. Show that f is uniformly continuous.
Prove if f is continuous on [a,b] then f is bounded below and f has a...
Prove if f is continuous on [a,b] then f is bounded below and f has a minimum on [a,b].
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT