Question

Let f : [a, b] → R be bounded, and assume that f is continuous on...

Let f : [a, b] → R be bounded, and assume that f is continuous on [a, b). Prove that f is integrable on [a, b].

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let 0 < a < b < ∞. Let f : [a, ∞) → R continuous...
Let 0 < a < b < ∞. Let f : [a, ∞) → R continuous R at [a, b] and f decreasing on [b, ∞). Prove that f is bounded above.
Let f:Ω-->R^m be uniformly continuous on Ω⊂R^n. Show if (Ω) is bounded, then f(Ω) is bounded.
Let f:Ω-->R^m be uniformly continuous on Ω⊂R^n. Show if (Ω) is bounded, then f(Ω) is bounded.
Let f: R --> R be a differentiable function such that f' is bounded. Show that...
Let f: R --> R be a differentiable function such that f' is bounded. Show that f is uniformly continuous.
6. Let a < b and let f : [a, b] → R be continuous. (a)...
6. Let a < b and let f : [a, b] → R be continuous. (a) Prove that if there exists an x0 ∈ [a, b] for which f(x0) 6= 0, then Z b a |f(x)|dxL > 0. (b) Use (a) to conclude that if Z b a |f(x)|dx = 0, then f(x) := 0 for all x ∈ [a, b].
Let f : [a,b] → R be a bounded function and let:             M = sup...
Let f : [a,b] → R be a bounded function and let:             M = sup f(x)             m = inf f(x)             M* =sup |f(x)|             m* =inf |f(x)| assuming you are taking values of x that lie in [a,b]. Is it true that M* - m* ≤ M - m ? If it is true, prove it. If it is false, find a counter example.
2. Suppose [a, b] is a closed bounded interval. If f : [a, b] → R...
2. Suppose [a, b] is a closed bounded interval. If f : [a, b] → R is a continuous function, then prove f has an absolute minimum on [a, b].
We know that any continuous function f : [a, b] → R is uniformly continuous on...
We know that any continuous function f : [a, b] → R is uniformly continuous on the finite closed interval [a, b]. (i) What is the definition of f being uniformly continuous on its domain? (This definition is meaningful for functions f : J → R defined on any interval J ⊂ R.) (ii) Given a differentiable function f : R → R, prove that if the derivative f ′ is a bounded function on R, then f is uniformly...
Let f : R → R be a continuous function which is periodic. Show that f...
Let f : R → R be a continuous function which is periodic. Show that f is bounded and has at least one fixed point.
Prove if f is continuous on [a,b] then f is bounded below and f has a...
Prove if f is continuous on [a,b] then f is bounded below and f has a minimum on [a,b].
Let a < b, a, b, ∈ R, and let f : [a, b] → R...
Let a < b, a, b, ∈ R, and let f : [a, b] → R be continuous such that f is twice differentiable on (a, b), meaning f is differentiable on (a, b), and f' is also differentiable on (a, b). Suppose further that there exists c ∈ (a, b) such that f(a) > f(c) and f(c) < f(b). prove that there exists x ∈ (a, b) such that f'(x)=0. then prove there exists z ∈ (a, b) such...