Question

show that if f is a bounded increasing continuous function on (a,b), then f is uniformly...

show that if f is a bounded increasing continuous function on (a,b), then f is uniformly continuous. Hint: Extend the function to [a,b].

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
We know that any continuous function f : [a, b] → R is uniformly continuous on...
We know that any continuous function f : [a, b] → R is uniformly continuous on the finite closed interval [a, b]. (i) What is the definition of f being uniformly continuous on its domain? (This definition is meaningful for functions f : J → R defined on any interval J ⊂ R.) (ii) Given a differentiable function f : R → R, prove that if the derivative f ′ is a bounded function on R, then f is uniformly...
Let f: R --> R be a differentiable function such that f' is bounded. Show that...
Let f: R --> R be a differentiable function such that f' is bounded. Show that f is uniformly continuous.
Let f:Ω-->R^m be uniformly continuous on Ω⊂R^n. Show if (Ω) is bounded, then f(Ω) is bounded.
Let f:Ω-->R^m be uniformly continuous on Ω⊂R^n. Show if (Ω) is bounded, then f(Ω) is bounded.
Show that the function f(x)=x2sin(x) is uniformly continuous on [0,b] for any constant b>0, but that...
Show that the function f(x)=x2sin(x) is uniformly continuous on [0,b] for any constant b>0, but that is not uniformly continuous on [0,infinity)
A function f : A −→ R is uniformly continuous and its domain A ⊂ R...
A function f : A −→ R is uniformly continuous and its domain A ⊂ R is bounded. Prove that f is a bounded function. Can this conclusion hold if we replace the "uniform continuity" by just "continuity"?
Let f be a bounded measurable function on E. Show that there are sequences of simple...
Let f be a bounded measurable function on E. Show that there are sequences of simple functions on E, {(pn) and {cn}, such that {(pn} is increasing and {cn} is decreasing and each of these sequences converges to f uniformly on E.
Show that the function f(x) = x^2 + 2 is uniformly continuous on the interval [-1,...
Show that the function f(x) = x^2 + 2 is uniformly continuous on the interval [-1, 3].
Suppose A is bounded and not compact. Prove that there is a function that is continuous...
Suppose A is bounded and not compact. Prove that there is a function that is continuous on A, but not uniformly continuous. Give an example of a set that is not compact, but every function continuous on that set is uniformly continuous.
Let f be a continuous function on the real line. Suppose f is uniformly continuous on...
Let f be a continuous function on the real line. Suppose f is uniformly continuous on the set of all rationals. Prove that f is uniformly continuous on the real line.
Let f: [a,b] to R be continuous and strictly increasing on (a,b). Show that f is...
Let f: [a,b] to R be continuous and strictly increasing on (a,b). Show that f is strictly increasing on [a,b].