Question

Let 0 < a < b < ∞. Let f : [a, ∞) → R continuous...

Let 0 < a < b < ∞. Let f : [a, ∞) → R continuous R at [a, b] and f decreasing on [b, ∞). Prove that f is bounded above.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f : [a, b] → R be bounded, and assume that f is continuous on...
Let f : [a, b] → R be bounded, and assume that f is continuous on [a, b). Prove that f is integrable on [a, b].
Prove the IVT theorem Prove: If f is continuous on [a,b] and f(a),f(b) have different signs...
Prove the IVT theorem Prove: If f is continuous on [a,b] and f(a),f(b) have different signs then there is an r ∈ (a,b) such that f(r) = 0. Using the claims: f is continuous on [a,b] there exists a left sequence (a_n) that is increasing and bounded and converges to r, and left decreasing sequence and bounded (b_n)=r. limf(a_n)= r= limf(b_n), and f(r)=0.
6. Let a < b and let f : [a, b] → R be continuous. (a)...
6. Let a < b and let f : [a, b] → R be continuous. (a) Prove that if there exists an x0 ∈ [a, b] for which f(x0) 6= 0, then Z b a |f(x)|dxL > 0. (b) Use (a) to conclude that if Z b a |f(x)|dx = 0, then f(x) := 0 for all x ∈ [a, b].
Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0...
Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0 for every x ∈ [a,b]. 1) Show that either f(x) > 0 for every x ∈ [a,b] or f(x) < 0 for every x ∈ [a,b]. 2) Assume that f(x) > 0 for every x ∈ [a,b] and prove that there exists ε > 0 such that f(x) ≥ ε for all x ∈ [a,b].
Let a < b, a, b, ∈ R, and let f : [a, b] → R...
Let a < b, a, b, ∈ R, and let f : [a, b] → R be continuous such that f is twice differentiable on (a, b), meaning f is differentiable on (a, b), and f' is also differentiable on (a, b). Suppose further that there exists c ∈ (a, b) such that f(a) > f(c) and f(c) < f(b). prove that there exists x ∈ (a, b) such that f'(x)=0. then prove there exists z ∈ (a, b) such...
We know that any continuous function f : [a, b] → R is uniformly continuous on...
We know that any continuous function f : [a, b] → R is uniformly continuous on the finite closed interval [a, b]. (i) What is the definition of f being uniformly continuous on its domain? (This definition is meaningful for functions f : J → R defined on any interval J ⊂ R.) (ii) Given a differentiable function f : R → R, prove that if the derivative f ′ is a bounded function on R, then f is uniformly...
Let f : R → R be a continuous function which is periodic. Show that f...
Let f : R → R be a continuous function which is periodic. Show that f is bounded and has at least one fixed point.
Let f, g : [a, b] ---> R continuous such that (f(a) - g(a)) (f(b) -...
Let f, g : [a, b] ---> R continuous such that (f(a) - g(a)) (f(b) - g(b)) < 0. b) Show that inf {|f(x) - g(x)| : x ϵ [a,b]} = 0 and is achieved (is a minimum).
Let f, g : [a, b] ---> R continuous such that (f(a) - g(a)) (f(b) -...
Let f, g : [a, b] ---> R continuous such that (f(a) - g(a)) (f(b) - g(b)) < 0. a) Show that sup{|f(x) - g(x)| : x ϵ [a, b]} is strictly positive and achieved (is a maximum).
Let f : [0, 1] → R be continuous with [0, 1] ⊆ f([0, 1]). Show...
Let f : [0, 1] → R be continuous with [0, 1] ⊆ f([0, 1]). Show that there is a c ∈ [0, 1] such that f(c) = c.