Question

Prove: If f(x) = anx^n + an−1x^n−1 + ··· + a1x + a0 has integer coefficients...

Prove: If f(x) = anx^n + an−1x^n−1 + ··· + a1x + a0 has integer coefficients with an ? 0 ? a0 and there are relatively prime integers p, q ∈ Z with f ? p ? = 0, then p | a0 and q | an . [Hint: Clear denominators.]

Homework Answers

Answer #1

I have written a detailed solution to the problem, basically you have to use the fact that p and q are coprime then you can arrive at the conclusion by a simple arrangement. Please find the attachment. If you like my work please give an upvote, also feel free to share your feedback about the solution, this will help me a lot to improve the quality of my answers. Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if f(x) = akx^k +ak−1x^k+1 +ak−2x^k+2+...+a1x+a0 is a polynomial in Q[x] and ak ̸=...
Prove that if f(x) = akx^k +ak−1x^k+1 +ak−2x^k+2+...+a1x+a0 is a polynomial in Q[x] and ak ̸= 0, and f (x) factors as f (x) = g(x)h(x), where g(x) and h(x) are polynomials in Q[x], then deg f = deg g+ deg h.
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... +...
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... + anx^n: ai in Z[x],a0 = 5n}, that is, the set of all polynomials where the constant coefficient is a multiple of 5. You can assume that I is an ideal of Z[x]. a. What is the simplest form of an element in the quotient ring z[x] / I? b. Explicitly give the elements in Z[x] / I. c. Prove that I is not a...
Prove the following statements: 1- If m and n are relatively prime, then for any x...
Prove the following statements: 1- If m and n are relatively prime, then for any x belongs, Z there are integers a; b such that x = am + bn 2- For every n belongs N, the number (n^3 + 2) is not divisible by 4.
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime:...
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime: there exist infinitely many positive integers n such that p | f(n)} is infinite.
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2...
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2 be vectors in P2 with p, q = a0b0 + a1b1 + a2b2. Determine whether the given second-degree polynomials form an orthonormal set, and if not, then apply the Gram-Schmidt orthonormalization process to form an orthonormal set. (If the set is orthonormal, enter ORTHONORMAL in both answer blanks.) { 3 (x2−1), 3 (x2 + x + 2)} u1 = u2 =
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2...
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2 be vectors in P2 with p, q = a0b0 + a1b1 + a2b2. Determine whether the given second-degree polynomials form an orthonormal set, and if not, then apply the Gram-Schmidt orthonormalization process to form an orthonormal set. (If the set is orthonormal, enter ORTHONORMAL in both answer blanks.) { square root 3 (x2−1), square root 3 (x2 + x + 2)} u1 = u2...
4) Let F be a finite field. Prove that there exists an integer n ≥ 1,...
4) Let F be a finite field. Prove that there exists an integer n ≥ 1, such that n.1F = 0F . Show further that the smallest positive integer with this property is a prime number.
Problem 2: (i) Let a be an integer. Prove that 2|a if and only if 2|a3....
Problem 2: (i) Let a be an integer. Prove that 2|a if and only if 2|a3. (ii) Prove that 3√2 (cube root) is irrational. Problem 3: Let p and q be prime numbers. (i) Prove by contradiction that if p+q is prime, then p = 2 or q = 2 (ii) Prove using the method of subsection 2.2.3 in our book that if p+q is prime, then p = 2 or q = 2 Proposition 2.2.3. For all n ∈...
Prove that n − 1 and 2n − 1 are relatively prime, for all integers n...
Prove that n − 1 and 2n − 1 are relatively prime, for all integers n > 1.
Prove that if x+ \frac{1}{x} is integer then x^n+ \frac{1}{x^n} is also integer for any positive...
Prove that if x+ \frac{1}{x} is integer then x^n+ \frac{1}{x^n} is also integer for any positive integer n. KEY NOTE: PROVE BY INDUCTION
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT