Question

Prove that if f(x) = akx^k +ak−1x^k+1 +ak−2x^k+2+...+a1x+a0 is a polynomial in Q[x] and ak ̸=...

Prove that if f(x) = akx^k +ak−1x^k+1 +ak−2x^k+2+...+a1x+a0 is a polynomial in Q[x] and ak ̸= 0, and f (x) factors as f (x) = g(x)h(x), where g(x) and h(x) are polynomials in Q[x], then deg f = deg g+ deg h.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove: If f(x) = anx^n + an−1x^n−1 + ··· + a1x + a0 has integer coefficients...
Prove: If f(x) = anx^n + an−1x^n−1 + ··· + a1x + a0 has integer coefficients with an ? 0 ? a0 and there are relatively prime integers p, q ∈ Z with f ? p ? = 0, then p | a0 and q | an . [Hint: Clear denominators.]
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... +...
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... + anx^n: ai in Z[x],a0 = 5n}, that is, the set of all polynomials where the constant coefficient is a multiple of 5. You can assume that I is an ideal of Z[x]. a. What is the simplest form of an element in the quotient ring z[x] / I? b. Explicitly give the elements in Z[x] / I. c. Prove that I is not a...
True or False, explain: 1. Any polynomial f in Q[x] with deg(f)=3 and no roots in...
True or False, explain: 1. Any polynomial f in Q[x] with deg(f)=3 and no roots in Q is irreducible. 2. Any polynomial f in Q[x] with deg(f)-4 and no roots in Q is irreducible. 3. Zx40 is isomorphic to Zx5 x Zx8 4. If G is a finite group and H<G, then [G:H] = |G||H| 5. If [G:H]=2, then H is normal in G. 6. If G is a finite group and G<S28, then there is a subgroup of G...
7. Suppose p(x) = a0 + a1x + a 2 x 2 + · · ·...
7. Suppose p(x) = a0 + a1x + a 2 x 2 + · · · + akx k is a polynomial of degree k. Find the Taylor series of p(x), and find its radius and interval of convergence.
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2...
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2 be vectors in P2 with p, q = a0b0 + a1b1 + a2b2. Determine whether the polynomials form an orthonormal set, and if not, apply the Gram-Schmidt orthonormalization process to form an orthonormal set. (If the set is orthonormal, enter ORTHONORMAL in both answer blanks.) {−2 + x2, −2 + x} u1= u2=
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2...
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2 be vectors in P2 with p, q = a0b0 + a1b1 + a2b2. Determine whether the given second-degree polynomials form an orthonormal set, and if not, then apply the Gram-Schmidt orthonormalization process to form an orthonormal set. (If the set is orthonormal, enter ORTHONORMAL in both answer blanks.) { 3 (x2−1), 3 (x2 + x + 2)} u1 = u2 =
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2...
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2 be vectors in P2 with p, q = a0b0 + a1b1 + a2b2. Determine whether the given second-degree polynomials form an orthonormal set, and if not, then apply the Gram-Schmidt orthonormalization process to form an orthonormal set. (If the set is orthonormal, enter ORTHONORMAL in both answer blanks.) { square root 3 (x2−1), square root 3 (x2 + x + 2)} u1 = u2...
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) =...
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) = (x−a1)(x−a2)···(x−an)−1 in Q[x] (1) Prove that if then f(x) = g(x)h(x) for some g(x), h(x) ∈ Z[x], g(ai) + h(ai) = 0 for all i = 1, 2, ..., n (2) Prove that f(x) is irreducible over Q
Q7) Factorise the polynomial f(x) = x3 − 2x2 + 2x − 1 into irreducible polynomials...
Q7) Factorise the polynomial f(x) = x3 − 2x2 + 2x − 1 into irreducible polynomials in Z5[x], i.e. represent f(x) as a product of irreducible polynomials in Z5[x]. Demonstrate that the polynomials you obtained are irreducible. I think i manged to factorise this polynomial. I found a factor to be 1 so i divided the polynomial by (x-1) as its a linear factor. So i get the form (x3 − 2x2 + 2x − 1) = (x2-x+1)*(x-1) which is...
For each of the following pairs of polynomials f(x) and g(x), write f(x) in the form...
For each of the following pairs of polynomials f(x) and g(x), write f(x) in the form f(x) = k(x)g(x) + r(x) with deg(r(x)) < deg(g(x)). a)   f(x) = x^4 + x^3 + x^2 + x + 1 and g(x) = x^2 − 2x + 1. b)   f(x) = x^3 + x^2 + 1 and g(x) = x^2 − 5x + 6. c)   f(x) = x^22 − 1 and g(x) = x^5 − 1.