Question

problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... +...

problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... + anx^n: ai in Z[x],a0 = 5n}, that is, the set of all polynomials where the constant coefficient is a multiple of 5. You can assume that I is an ideal of Z[x]. a. What is the simplest form of an element in the quotient ring z[x] / I? b. Explicitly give the elements in Z[x] / I. c. Prove that I is not a principal ideal (that is, I does not equal <f(x)> for any polynomial f(x) in Z[x])

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if f(x) = akx^k +ak−1x^k+1 +ak−2x^k+2+...+a1x+a0 is a polynomial in Q[x] and ak ̸=...
Prove that if f(x) = akx^k +ak−1x^k+1 +ak−2x^k+2+...+a1x+a0 is a polynomial in Q[x] and ak ̸= 0, and f (x) factors as f (x) = g(x)h(x), where g(x) and h(x) are polynomials in Q[x], then deg f = deg g+ deg h.
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2...
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2 be vectors in P2 with p, q = a0b0 + a1b1 + a2b2. Determine whether the polynomials form an orthonormal set, and if not, apply the Gram-Schmidt orthonormalization process to form an orthonormal set. (If the set is orthonormal, enter ORTHONORMAL in both answer blanks.) {−2 + x2, −2 + x} u1= u2=
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2...
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2 be vectors in P2 with p, q = a0b0 + a1b1 + a2b2. Determine whether the given second-degree polynomials form an orthonormal set, and if not, then apply the Gram-Schmidt orthonormalization process to form an orthonormal set. (If the set is orthonormal, enter ORTHONORMAL in both answer blanks.) { 3 (x2−1), 3 (x2 + x + 2)} u1 = u2 =
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2...
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2 be vectors in P2 with p, q = a0b0 + a1b1 + a2b2. Determine whether the given second-degree polynomials form an orthonormal set, and if not, then apply the Gram-Schmidt orthonormalization process to form an orthonormal set. (If the set is orthonormal, enter ORTHONORMAL in both answer blanks.) { square root 3 (x2−1), square root 3 (x2 + x + 2)} u1 = u2...
Let I= (x2 +2) in Z7 [x] , and let R be the factor ring Z7...
Let I= (x2 +2) in Z7 [x] , and let R be the factor ring Z7 [x] / I. a) Prove that every element of R can be written in the form f + I where f is an element of Z7 [x] and deg(f0< or =2 or f=0. That is, R={ f + I : f in Z7 [x] and (deg (f) , or=2 or f=0)}
Let R be a commutative ring with unity. Prove that the principal ideal generated by x...
Let R be a commutative ring with unity. Prove that the principal ideal generated by x in the polynomial ring R[x] is a prime ideal iff R is an integral domain.
For each polynomial f(x) ∈ Z[x], let f ' (x) denote its derivative, which is also...
For each polynomial f(x) ∈ Z[x], let f ' (x) denote its derivative, which is also a polynomial in Z[x]. Let R be the following subset of Z[x]: R = {f(x) ∈ Z[x] | f ' (0) = 0}. (a) Prove that R is a subring of Z[x]. (b) Prove that R is not an ideal of Z[x].
4. (30) Let C be the ring of complex numbers,and letf:C→C be the map defined by...
4. (30) Let C be the ring of complex numbers,and letf:C→C be the map defined by f(z) = z^3. (i) Prove that f is not a homomorphism of rings, by finding an explicit counterex- ample. (ii) Prove that f is not injective. (iii) Prove that the principal ideal I = 〈x^2 + x + 1〉 is not a prime ideal of C[x]. (iv) Determine whether or not the ring C[x]/I is a field.
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT