Question

1. Let Z[i] denote the set of all ‘complex numbers with integer coefficients’:the set of all...

1. Let Z[i] denote the set of all ‘complex numbers with integer coefficients’:the set of all a + bi such that a and b are integers. We say that z is composite if there exist two complex integers v and w such that z=vw and |v|>1 and |w|>1. Then z is prime if it is not composite

A) Prove that every complex integer z, |z| > 1, can be expressed as a product of prime complex integers.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Definition:In the complex numbers, let J denote the set, {x+y√3i :x and y are in Z}....
Definition:In the complex numbers, let J denote the set, {x+y√3i :x and y are in Z}. J is an integral domain containing Z. If a is in J, then N(a) is a non-negative member of Z. If a and b are in J and a|b in J, then N(a)|N(b) in Z. The units of J are 1, -1 Question:If a and b are in J and ab = 2, then prove one of a and b is a unit. Thus,...
Complex Variables: (a) Describe all complex numbers 'z' such that e^z = 1. (b) Let 'w'...
Complex Variables: (a) Describe all complex numbers 'z' such that e^z = 1. (b) Let 'w' be a complex number. Let 'a' be a complex number such that e^a = w. Describe all complex numbers 'z' such that e^z = w.
Let Z[x] be the ring of polynomials with integer coefficients. Find U(Z[x]), the set of all...
Let Z[x] be the ring of polynomials with integer coefficients. Find U(Z[x]), the set of all units of Z[x].
Due October 25. Let Z[i] denote the Gaussian integers, with norm N(a + bi) = a...
Due October 25. Let Z[i] denote the Gaussian integers, with norm N(a + bi) = a 2 + b 2 . Recall that ±1, ±i are the only units i Z[i]. (i) Use the norm N to show that 1 + i is irreducible in Z[i]. (ii) Write 2 as a product of distinct irreducible elements in Z[i].
Find the set of complex numbers z satisfying the two conditions: Re((z+1)^2)=0 and Im((z−1)^2)=2. Here Re(a...
Find the set of complex numbers z satisfying the two conditions: Re((z+1)^2)=0 and Im((z−1)^2)=2. Here Re(a + bi) = a and Im(a + bi) = b if both a, b ∈ R. Then find the cardinality of the set.
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime:...
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime: there exist infinitely many positive integers n such that p | f(n)} is infinite.
Problem 2: (i) Let a be an integer. Prove that 2|a if and only if 2|a3....
Problem 2: (i) Let a be an integer. Prove that 2|a if and only if 2|a3. (ii) Prove that 3√2 (cube root) is irrational. Problem 3: Let p and q be prime numbers. (i) Prove by contradiction that if p+q is prime, then p = 2 or q = 2 (ii) Prove using the method of subsection 2.2.3 in our book that if p+q is prime, then p = 2 or q = 2 Proposition 2.2.3. For all n ∈...
4. (30) Let C be the ring of complex numbers,and letf:C→C be the map defined by...
4. (30) Let C be the ring of complex numbers,and letf:C→C be the map defined by f(z) = z^3. (i) Prove that f is not a homomorphism of rings, by finding an explicit counterex- ample. (ii) Prove that f is not injective. (iii) Prove that the principal ideal I = 〈x^2 + x + 1〉 is not a prime ideal of C[x]. (iv) Determine whether or not the ring C[x]/I is a field.
Prove: If f(x) = anx^n + an−1x^n−1 + ··· + a1x + a0 has integer coefficients...
Prove: If f(x) = anx^n + an−1x^n−1 + ··· + a1x + a0 has integer coefficients with an ? 0 ? a0 and there are relatively prime integers p, q ∈ Z with f ? p ? = 0, then p | a0 and q | an . [Hint: Clear denominators.]
1. Let W be the set of all [x y z}^t in R^3 such that xyz...
1. Let W be the set of all [x y z}^t in R^3 such that xyz = 0. Is W a subspace of R^3? 2. Let C^0 (R) denote the space of all continuous real-valued functions f(x) of x in R. Let W be the set of all continuous functions f(x) such that f(1) = 0. Is W a subspace of C^0(R)?