Question

Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime:...

Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime: there exist infinitely many positive integers n such that p | f(n)} is infinite.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f ∈ Z[x] be a nonconstant polynomial with the property that all the roots (in...
Let f ∈ Z[x] be a nonconstant polynomial with the property that all the roots (in comlex plane) for the equation f(x) = 0 are distinct. Prove that there exist infinitely many positive integers n such that f(n) is not a perfect square.
Let f ∈ Z[x] be a nonconstant polynomial with the property that all the roots (in...
Let f ∈ Z[x] be a nonconstant polynomial with the property that all the roots (in comlex plane) for the equation f(x) = 0 are distinct. Prove that there exist infinitely many positive integers n such that f(n) is not a perfect square. Could you explain it in number theory instead of some deep math like sigel theorem
Let p be an odd prime. Let f(x) ∈ Q(x) be an irreducible polynomial of degree...
Let p be an odd prime. Let f(x) ∈ Q(x) be an irreducible polynomial of degree p whose Galois group is the dihedral group D_2p of a regular p-gon. Prove that f (x) has either all real roots or precisely one real root.
Let p be a prime and m an integer. Suppose that the polynomial f(x) = x^4+mx+p...
Let p be a prime and m an integer. Suppose that the polynomial f(x) = x^4+mx+p is reducible over Q. Show that if f(x) has no zeros in Q, then p = 3.
Let f: Z→Z be the functon defined by f(x)=x+1. Prove that f is a permutation of...
Let f: Z→Z be the functon defined by f(x)=x+1. Prove that f is a permutation of the set of integers. Let g be the permutation (1 2 4 8 16 32). Compute fgf−1.
For each polynomial f(x) ∈ Z[x], let f ' (x) denote its derivative, which is also...
For each polynomial f(x) ∈ Z[x], let f ' (x) denote its derivative, which is also a polynomial in Z[x]. Let R be the following subset of Z[x]: R = {f(x) ∈ Z[x] | f ' (0) = 0}. (a) Prove that R is a subring of Z[x]. (b) Prove that R is not an ideal of Z[x].
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) =...
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) = (x−a1)(x−a2)···(x−an)−1 in Q[x] (1) Prove that if then f(x) = g(x)h(x) for some g(x), h(x) ∈ Z[x], g(ai) + h(ai) = 0 for all i = 1, 2, ..., n (2) Prove that f(x) is irreducible over Q
Let p be a prime. (a) Prove that Z/pZ ⊕ Z/pZ has exactly p + 1...
Let p be a prime. (a) Prove that Z/pZ ⊕ Z/pZ has exactly p + 1 subgroups of order p. (b) How many subgroups of order p does Z/pZ ⊕ Z/pZ ⊕ Z/pZ have? Can you generalize further? Explain.
Let F be a field and let a(x), b(x) be polynomials in F[x]. Let S be...
Let F be a field and let a(x), b(x) be polynomials in F[x]. Let S be the set of all linear combinations of a(x) and b(x). Let d(x) be the monic polynomial of smallest degree in S. Prove that d(x) divides a(x).
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... +...
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... + anx^n: ai in Z[x],a0 = 5n}, that is, the set of all polynomials where the constant coefficient is a multiple of 5. You can assume that I is an ideal of Z[x]. a. What is the simplest form of an element in the quotient ring z[x] / I? b. Explicitly give the elements in Z[x] / I. c. Prove that I is not a...