Question

Show that if p converges to the point x and y is a point different from...

  1. Show that if p converges to the point x and y is a point different from x, then p does not converge to y.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show that if sequence (an) converges, then all the rearrangement of (an) converges, and converge to...
Show that if sequence (an) converges, then all the rearrangement of (an) converges, and converge to the same limit
Question 6. Find the distance from point P(1,−2,3) to the plane of equation (x−3) + 2(y...
Question 6. Find the distance from point P(1,−2,3) to the plane of equation (x−3) + 2(y + 1)−4z = 0. Question 8. Consider the function f(x,y) = x|x|+|y|, show that fx(0,0) exists but fy(0,0) does not exist.
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there...
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there is a nearest point p∈K to x; that is, there is a point p∈K such that, for all other q∈K, d(p,x)≤d(q,x). [Suggestion: As a start, let S={d(x,y):y∈K} and show there is a sequence (qn) from K such that the numerical sequence (d(x,qn)) converges to inf(S).] Let X=R^2 and T={(x,y):x^2+y^2=1}. Show, there is a point z∈X and distinct points a,b∈T that are nearest points to...
28) Let P(x, y) be a propositional function. Show that ∃x ∀y P(x, y) → ∀y...
28) Let P(x, y) be a propositional function. Show that ∃x ∀y P(x, y) → ∀y ∃x P(x, y) is a tautology. 29. Let P(x) and Q(x) be propositional functions. Show that ∃x (P(x) → Q(x)) and ∀x P(x) → ∃x Q(x) always have the same truth value.
Let X, Y be metric spaces, with Y complete. Let S ⊂ X and let f...
Let X, Y be metric spaces, with Y complete. Let S ⊂ X and let f : S → Y be uniformly continuous. (a) Suppose p ∈ S closure and (pn) is a sequence in S with pn → p. Show that (f(pn)) converges in y to some point yp.
Consider f(x, y) = (x ^2)y + 3xy − x(y^2) and point P (1, 0). Find...
Consider f(x, y) = (x ^2)y + 3xy − x(y^2) and point P (1, 0). Find the directional derivative of f at P in the direction of ⃗v = 〈1, 1〉. Starting from P , in what direction does f have the maximal rate of change? Calculate the maximal rate of change
Explain whether the following integrals converge or not. If the integral converges, find the value. If...
Explain whether the following integrals converge or not. If the integral converges, find the value. If the integral does not converge, describe why (does it go to +infinity, -infinity, oscillate, ?) i) Integral from x=1 to x=infinity of x^-1.4 dx ii) Integral from x=1 to x=infinity of 1/x^2 * (sin x)^2 dx iii) Integral from x=0 to x=1 of 1/(1-x) dx
Suppose (an), a sequence in a metric space X, converges to L ∈ X. Show, if...
Suppose (an), a sequence in a metric space X, converges to L ∈ X. Show, if σ : N → N is one-one, then the sequence (bn = aσ(n))n also converges to L.
Let A be a set and x a number. Show that x is a limit-point of...
Let A be a set and x a number. Show that x is a limit-point of A if and only if there exists a sequence x1 , x2 , . . . of distinct points in A that converges to x.
Xand Y are independent X~G(p) , Y~G(p) show U=X+Y follow NB(2,p)
Xand Y are independent X~G(p) , Y~G(p) show U=X+Y follow NB(2,p)