Question

Let A be a set and x a number. Show that x is a limit-point of...

Let A be a set and x a number. Show that x is a limit-point of A
if and only if there exists a sequence x1 , x2 , . . . of distinct points
in A that converges to x.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If p is a limit point of a set A is a first countable space X,...
If p is a limit point of a set A is a first countable space X, then there is a sequence in A that converges to p.
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there...
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there is a nearest point p∈K to x; that is, there is a point p∈K such that, for all other q∈K, d(p,x)≤d(q,x). [Suggestion: As a start, let S={d(x,y):y∈K} and show there is a sequence (qn) from K such that the numerical sequence (d(x,qn)) converges to inf(S).] Let X=R^2 and T={(x,y):x^2+y^2=1}. Show, there is a point z∈X and distinct points a,b∈T that are nearest points to...
Rewrite the statement “a real number x is not the limit of a sequence of real...
Rewrite the statement “a real number x is not the limit of a sequence of real numbers x1, x2,· · ·” by using quantifiers explicitly.
let A be a subset of Rn and let x be a point in Rn. Show...
let A be a subset of Rn and let x be a point in Rn. Show that x is a limit point of A if and only if every open ball about x contains a point of A that is not equal to x
Theorem 16.11 Let A be a set. The set A is infinite if and only if...
Theorem 16.11 Let A be a set. The set A is infinite if and only if there is a proper subset B of A for which there exists a 1–1 correspondence f : A -> B. Complete the proof of Theorem 16.11 as follows: Begin by assuming that A is infinite. Let a1, a2,... be an infinite sequence of distinct elements of A. (How do we know such a sequence exists?) Prove that there is a 1–1 correspondence between the...
Let X be a topological space and A a subset of X. Show that there exists...
Let X be a topological space and A a subset of X. Show that there exists in X a neighbourhood Ox of each point x ∈ A such that A∩Ox is closed in Ox, if and only if A is an intersection of a closed set with an open set.
Let f(x) = 5x2 + x − 2. Use the limit definition of f′(a) and the...
Let f(x) = 5x2 + x − 2. Use the limit definition of f′(a) and the Limit Theorems only to show that f′(2) exists and equals 21.
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS Definition: A sequence {an} for n = 1 to ∞ converges to a real number A if and only if for each ε > 0 there is a positive integer N such that for all n ≥ N, |an – A| < ε . Let P be 6. and Let Q be 24. Define your sequence to be an = 4 + 1/(Pn +...
Show that the set of limit-point of any given set is a closed set.
Show that the set of limit-point of any given set is a closed set.
Let (X,d) be a complete metric space, and T a d-contraction on X, i.e., T: X...
Let (X,d) be a complete metric space, and T a d-contraction on X, i.e., T: X → X and there exists a q∈ (0,1) such that for all x,y ∈ X, we have d(T(x),T(y)) ≤ q∙d(x,y). Let a ∈ X, and define a sequence (xn)n∈Nin X by x1 := a     and     ∀n ∈ N:     xn+1 := T(xn). Prove, for all n ∈ N, that d(xn,xn+1) ≤ qn-1∙d(x1,x2). (Use the Principle of Mathematical Induction.) Prove that (xn)n∈N is a d-Cauchy sequence in...