Question

Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there...

Suppose K is a nonempty compact subset of a metric space X and x∈X.

Show, there is a nearest point p∈K to x; that is, there is a point p∈K such that, for all other q∈K, d(p,x)≤d(q,x).

[Suggestion: As a start, let S={d(x,y):y∈K} and show there is a sequence (qn) from K such that the numerical sequence (d(x,qn)) converges to inf(S).] Let X=R^2 and T={(x,y):x^2+y^2=1}.

Show, there is a point z∈X and distinct points a,b∈T that are nearest points to z. Let X=(0,∞)∪{−1} (as a subspace of R). Show there is no nearest point to −1 from the closed (in X) set K=(0,1].

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 6. For a closed convex nonempty subset K of a Hilbert space H and x...
Problem 6. For a closed convex nonempty subset K of a Hilbert space H and x ∈ H, denote by P x ∈ K a unique closest point to x among points in K, i.e. P x ∈ K such that ||P x − x|| ≤ ||y − x||, for all y ∈ K. First show that such point P x exists and unique. Next prove that all x, y ∈ H ||P x − P y|| ≤ ||x −...
Let (X, d) be a compact metric space and let A ⊆ X. Suppose that A...
Let (X, d) be a compact metric space and let A ⊆ X. Suppose that A is not compact. Prove that there exists a continuous function f : A → R, from (A, d) to (R, d|·|), which is not uniformly continuous.
Let (X,d) be a complete metric space, and T a d-contraction on X, i.e., T: X...
Let (X,d) be a complete metric space, and T a d-contraction on X, i.e., T: X → X and there exists a q∈ (0,1) such that for all x,y ∈ X, we have d(T(x),T(y)) ≤ q∙d(x,y). Let a ∈ X, and define a sequence (xn)n∈Nin X by x1 := a     and     ∀n ∈ N:     xn+1 := T(xn). Prove, for all n ∈ N, that d(xn,xn+1) ≤ qn-1∙d(x1,x2). (Use the Principle of Mathematical Induction.) Prove that (xn)n∈N is a d-Cauchy sequence in...
(2) If K is a subset of (X,d), show that K is compact if and only...
(2) If K is a subset of (X,d), show that K is compact if and only if every cover of K by relatively open subsets of K has a finite subcover.
Let (X, d) be a compact metric space and F: X--> X be a function such...
Let (X, d) be a compact metric space and F: X--> X be a function such that d(F(x), F(y)) < d(x, y). Let G: X --> R be a function such that G(x) = d(F(x), x). Prove G is continuous (assume that it is proved that F is continuous).
Suppose (an), a sequence in a metric space X, converges to L ∈ X. Show, if...
Suppose (an), a sequence in a metric space X, converges to L ∈ X. Show, if σ : N → N is one-one, then the sequence (bn = aσ(n))n also converges to L.
Let (X,d) be a metric space which contains an infinite countable set Ewith the property x,y...
Let (X,d) be a metric space which contains an infinite countable set Ewith the property x,y ∈ E ⇒ d(x,y) = 1. (a) Show E is a closed and bounded subset of X. (b) Show E is not compact. (c) Explain why E cannot be a subset of Rn for any n.
Let X, Y be metric spaces, with Y complete. Let S ⊂ X and let f...
Let X, Y be metric spaces, with Y complete. Let S ⊂ X and let f : S → Y be uniformly continuous. (a) Suppose p ∈ S closure and (pn) is a sequence in S with pn → p. Show that (f(pn)) converges in y to some point yp.
Each of the following defines a metric space X which is a subset of R^2 with...
Each of the following defines a metric space X which is a subset of R^2 with the Euclidean metric, together with a subset E ⊂ X. For each, 1. Find all interior points of E, 2. Find all limit points of E, 3. Is E is open relative to X?, 4. E is closed relative to X? I don't worry about proofs just answers is fine! a) X = R^2, E = {(x,y) ∈R^2 : x^2 + y^2 = 1,...
is about metric spaces: Let X be a metric discret space show that a sequence x_n...
is about metric spaces: Let X be a metric discret space show that a sequence x_n in X converge to l in X iff x_n is constant exept for a finite number of points.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT