Question

Xand Y are independent X~G(p) , Y~G(p) show U=X+Y follow NB(2,p)

Xand Y are independent X~G(p) , Y~G(p)

show U=X+Y follow NB(2,p)

Homework Answers

Answer #1

are IID random variables with Geometric distribution. .

The PMFs are

The PMF of is found as

Clearly, the above PMF is Negative Binomial with parameters .

Thus, . The proof is complete.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assume X and. Y are. 2. independent variables that follow the standard uniform distribution i.e. U(0,1)...
Assume X and. Y are. 2. independent variables that follow the standard uniform distribution i.e. U(0,1) Let Z = X + Y Find the PDF of Z, fZ(z) by first obtaining the CDF FZ(z) using the following steps: (a) Draw an x-y axis plot, and sketch on this plot the lines z=0.5, z=1, and z=1.5 (remembering z=x+y) (b) Use this plot to obtain the function which describes the area below the lines for z = x + y in terms...
Let X and Y be independent N(0,1) RVs. Suppose U = (X+Y)/squareroot(2) and V = (X-Y)/squareroot(2)....
Let X and Y be independent N(0,1) RVs. Suppose U = (X+Y)/squareroot(2) and V = (X-Y)/squareroot(2). Please derive the joint distribution of (U, V ) by using the Jacobian matrix method.
5. If X and Y are independent geometric RVs with parameters p and r re- spectively,...
5. If X and Y are independent geometric RVs with parameters p and r re- spectively, show that U = min(X, Y ) is geometric with parameter p + r − rp = 1−(1−r)(1−p).
Use the Chain Rule to evaluate the partial derivative ∂g/∂u at the point (u,v)=(0,1), where g(x,y)=x^2−y^2,...
Use the Chain Rule to evaluate the partial derivative ∂g/∂u at the point (u,v)=(0,1), where g(x,y)=x^2−y^2, x=e^3ucos(v), y=e^3usin(v). (Use symbolic notation and fractions where needed.)
Calculate P(E U Fc U G) where {E, F, G} is an independent set and P(E)...
Calculate P(E U Fc U G) where {E, F, G} is an independent set and P(E) = 3/4, P(F) = 3/5, and P(G) = 3/7.
Show that if two binomial random variables X ∼ Bin(a,p) and Y ∼ Bin(b,p) are independent,...
Show that if two binomial random variables X ∼ Bin(a,p) and Y ∼ Bin(b,p) are independent, then X + Y ∼ Bin(a + b, p), using the technique of moment generating function.
The problem is to maximise utility u(x, y) =2*x +y s.t. x,y ≥ 0 and p*x...
The problem is to maximise utility u(x, y) =2*x +y s.t. x,y ≥ 0 and p*x + q*y ≤ w, where p=13.4 and q=3.9 and w=1. Here, * denotes multiplication, / division, + addition, - subtraction. The solution to this problem is denoted (x_0, y_0) =(x(p, q, w), y(p, q, w)). The solution is the global max. Find ∂u(x_0,y_0)/∂p evaluated at the parameters (p, q, w) =(13.4, 3.9, 1). Write the answer as a number in decimal notation with at...
Consider the following utility function: U = X^2 + Y^2 If P x = 3 and...
Consider the following utility function: U = X^2 + Y^2 If P x = 3 and P y = 2.5, and the income is I= 50. Find the optimal consumption bundle.
a) let X follow the probability density function f(x):=e^(-x) if x>0, if Y is an independent...
a) let X follow the probability density function f(x):=e^(-x) if x>0, if Y is an independent random variable following an identical distribution f(x):=e^(-x) if x>0, calculate the moment generating function of 2X+3Y b) If X follows a bernoulli(0.5), and Y follows a Binomial(3,0.5), and if X and Y are independent, calculate the probability P(X+Y=3) and P(X=0|X+Y=3)
Problems 1. Two independent random variables X and Y have the probability distributions as follows: X...
Problems 1. Two independent random variables X and Y have the probability distributions as follows: X 1 2 5 P (X) 0.2 0.5 0.3 Y 2 4 P (Y) 0.7 0.3 a) Let T = X + Y. Find all possible values of T. Compute μ and . T σ T b) Let U = X - Y. Find all possible values of U. Compute μ U and σ U . c) Show that μ T = μ X +...