Question

Solve the initial-value problem:y′′+y=et(1+u1(t)),y(0) =y′(0) =0.

Solve the initial-value problem:y′′+y=et(1+u1(t)),y(0) =y′(0) =0.

Homework Answers

Answer #1

I hope you understand all the steps. If you still have any questions please let me know in comments. Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the initial value problem x′=x+y y′= 6x+ 2y+et, x(0) = 0, y(0) = 0.
Solve the initial value problem x′=x+y y′= 6x+ 2y+et, x(0) = 0, y(0) = 0.
Solve the initial value problem: y''−2y'+y=e^t/(1+t^2), y(0) = 1, y'(0) = 0.
Solve the initial value problem: y''−2y'+y=e^t/(1+t^2), y(0) = 1, y'(0) = 0.
Solve the initial value problem 3y'(t)y''(t)=16y(t) , y(0)=1, y'(0)=2
Solve the initial value problem 3y'(t)y''(t)=16y(t) , y(0)=1, y'(0)=2
Solve the differential equation with initial value y''−2y'+y=e^t/(1+t^2), y(0) = 1, y'(0) = 0.
Solve the differential equation with initial value y''−2y'+y=e^t/(1+t^2), y(0) = 1, y'(0) = 0.
Find the solution of the initial value problem y′′+4y=t^2+4^(et), y(0)=0, y′(0)=3.
Find the solution of the initial value problem y′′+4y=t^2+4^(et), y(0)=0, y′(0)=3.
solve the initial value problem y' y" - t = 0 y(1) = 2 y'(1) =1
solve the initial value problem y' y" - t = 0 y(1) = 2 y'(1) =1
2. Solve the initial-value problem: y′′′ + 4y′ = t, y(0) = y′(0) = 0, y′′(0)...
2. Solve the initial-value problem: y′′′ + 4y′ = t, y(0) = y′(0) = 0, y′′(0) = 1.
For 2y' = -tan(t)(y^2-1) find general solution (solve for y(t)) and solve initial value problem y(0)...
For 2y' = -tan(t)(y^2-1) find general solution (solve for y(t)) and solve initial value problem y(0) = -1/3
For the initial value problem • Solve the initial value problem. y' = 1/2−t+2y withy(0)=1
For the initial value problem • Solve the initial value problem. y' = 1/2−t+2y withy(0)=1
Solve the initial value problem t^(13) (dy/dt) +2t^(12) y =t^25 with t>0 and y(1)=0 (y'-e^-t+4)/y=-4, y(0)=-1
Solve the initial value problem t^(13) (dy/dt) +2t^(12) y =t^25 with t>0 and y(1)=0 (y'-e^-t+4)/y=-4, y(0)=-1