Question

Solve the initial value problem t^(13) (dy/dt) +2t^(12) y =t^25 with t>0 and y(1)=0 (y'-e^-t+4)/y=-4, y(0)=-1

Solve the initial value problem

t^(13) (dy/dt) +2t^(12) y =t^25 with t>0 and y(1)=0

(y'-e^-t+4)/y=-4, y(0)=-1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
solve the given initial value problem. y(cos2t)e^ty - 2(sin2t)e^ty + 2t + (t(cos2t)e^ty - 3) dy/dt...
solve the given initial value problem. y(cos2t)e^ty - 2(sin2t)e^ty + 2t + (t(cos2t)e^ty - 3) dy/dt = 0, y(0)=0
Solve the initial value problem 8(t+1)dy/dt - 6y = 12t for t > -1 with y(0)...
Solve the initial value problem 8(t+1)dy/dt - 6y = 12t for t > -1 with y(0) = 7 7 =
Solve the initial value problem 8(t+1)dy/dt−6y=12t, for t>−1 with y(0)=11.
Solve the initial value problem 8(t+1)dy/dt−6y=12t, for t>−1 with y(0)=11.
Solve the initial value problem 9(t+1) dy dt −6y=18t, 9(t+1)dydt−6y=18t, for t>−1 t>−1 with y(0)=14. y(0)=14....
Solve the initial value problem 9(t+1) dy dt −6y=18t, 9(t+1)dydt−6y=18t, for t>−1 t>−1 with y(0)=14. y(0)=14. Find the integrating factor, u(t)= u(t)= , and then find y(t)= y(t)=
1. Solve the following initial value problem using Laplace transforms. d^2y/dt^2+ y = g(t) with y(0)=0...
1. Solve the following initial value problem using Laplace transforms. d^2y/dt^2+ y = g(t) with y(0)=0 and dy/dt(0) = 1 where g(t) = t/2 for 0<t<6 and g(t) = 3 for t>6
solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=
solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y Initial conditions: x(0) = 0 y(0) = 2 a) Find the solution to this initial value problem (yes, I know, the text says that the solutions are x(t)= e^3t - e^-t and y(x) = e^3t + e^-t and but I want you to derive these solutions yourself using one of the methods we studied in chapter 4) Work this part out on paper to...
1. Solve the given initial value problem. dy/dt = (t^3 + t)/(y^2); y(0) = 2 ....
1. Solve the given initial value problem. dy/dt = (t^3 + t)/(y^2); y(0) = 2 . 2. We know from Newton’s Law of Cooling that the rate at which a cold soda warms up is proportional to the difference between the ambient temperature of the room and the temperature of the drink. The differential equation corresponding to this situation is given by y' = k(M − y) where k is a positive constant. The solution to this equation is given...
Solve the initial value problem. 5d^2y/dt^2 + 5dy/dt - y = 0; y(0)=0, y'(0)=1
Solve the initial value problem. 5d^2y/dt^2 + 5dy/dt - y = 0; y(0)=0, y'(0)=1
Solve the initial-value problem. (x2 + 1) dy dx + 3x(y − 1) = 0, y(0)...
Solve the initial-value problem. (x2 + 1) dy dx + 3x(y − 1) = 0, y(0) = 4