Question

For 2y' = -tan(t)(y^2-1) find general solution (solve for y(t)) and solve initial value problem y(0)...

For 2y' = -tan(t)(y^2-1) find general solution (solve for y(t)) and solve initial value problem y(0) = -1/3

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the Initial Value Problem: dydx+2y=9,         y(0)=0 dydx+ycosx=5cosx,        y(0)=7d Find the general solution, y(t)y(t), which solves...
Solve the Initial Value Problem: dydx+2y=9,         y(0)=0 dydx+ycosx=5cosx,        y(0)=7d Find the general solution, y(t)y(t), which solves the problem below, by the method of integrating factors. 8tdydt+y=t3,t>08tdydt+y=t3,t>0 Put the problem in standard form. Then find the integrating factor, μ(t)=μ(t)=  ,__________ and finally find y(t)=y(t)= __________ . (use C as the unkown constant.) Solve the following initial value problem: tdydt+6y=7ttdydt+6y=7t with y(1)=2.y(1)=2. Put the problem in standard form. Then find the integrating factor, ρ(t)=ρ(t)= _______ , and finally find y(t)=y(t)= _________ .
Find y(t) solution of the initial value problem 3ty^2y'-6y^3-4t^2=0, y(1)=1, t>0
Find y(t) solution of the initial value problem 3ty^2y'-6y^3-4t^2=0, y(1)=1, t>0
For the initial value problem • Solve the initial value problem. y' = 1/2−t+2y withy(0)=1
For the initial value problem • Solve the initial value problem. y' = 1/2−t+2y withy(0)=1
Solve the initial value problem: y''−2y'+y=e^t/(1+t^2), y(0) = 1, y'(0) = 0.
Solve the initial value problem: y''−2y'+y=e^t/(1+t^2), y(0) = 1, y'(0) = 0.
Solve the Initial Value Problem: a) dydx+2y=9, y(0)=0 y(x)=_______________ b) dydx+ycosx=5cosx,        y(0)=7d y(x)=______________ c) Find the...
Solve the Initial Value Problem: a) dydx+2y=9, y(0)=0 y(x)=_______________ b) dydx+ycosx=5cosx,        y(0)=7d y(x)=______________ c) Find the general solution, y(t), which solves the problem below, by the method of integrating factors. 8t dy/dt +y=t^3, t>0 Put the problem in standard form. Then find the integrating factor, μ(t)= ,__________ and finally find y(t)= __________ . (use C as the unkown constant.) d) Solve the following initial value problem: t dy/dt+6y=7t with y(1)=2 Put the problem in standard form. Then find the integrating...
solve the initial value problem y''-2y'+5y=u(t-2) y(0)=0 y'(0)=0
solve the initial value problem y''-2y'+5y=u(t-2) y(0)=0 y'(0)=0
for the given initial value problem: (2-t)y' + 2y =(2-t)3(ln(t))    ; y(1) = -2 solve the...
for the given initial value problem: (2-t)y' + 2y =(2-t)3(ln(t))    ; y(1) = -2 solve the initial value problem
solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=
solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=
find y(t) solution of the initial value problem y'=(2y^2 +bt^2)/(ty), y(1)=1 t>o
find y(t) solution of the initial value problem y'=(2y^2 +bt^2)/(ty), y(1)=1 t>o
Solve the initial value problem y''−y'−2y=0, y(0) = α, y'(0) =2. Then find α so that...
Solve the initial value problem y''−y'−2y=0, y(0) = α, y'(0) =2. Then find α so that the solution approaches zero as t →∞