Question

You might think that if you looked at the first digit in randomly selected numbers that...

You might think that if you looked at the first digit in randomly selected numbers that the distribution would be uniform. Actually, it is not! Simon Newcomb and later Frank Benford both discovered that the digits occur according to the following distribution: (digit, probability)

(1,0.301),(2,0.176),(3,0.125),(4,0.097),(5,0.079),(6,0.067),(7,0.058),(8,0.051),(9,0.046)(1,0.301),(2,0.176),(3,0.125),(4,0.097),(5,0.079),(6,0.067),(7,0.058),(8,0.051),(9,0.046)



The IRS currently uses Benford's Law to detect fraudulent tax data. Suppose you work for the IRS and are investigating an individual suspected of embezzling. The first digit of 201 checks to a supposed company are as follows:

Digit Observed
Frequency
1 49
2 31
3 24
4 14
5 15
6 20
7 21
8 20
9 7



a. State the appropriate null and alternative hypotheses for this test.



b. Explain why ?=0.01?=0.01 is an appropriate choice for the level of significance in this situation.



c. What is the P-Value? Report answer to 4 decimal places
P-Value =


d. What is your decision?

Fail to reject the Null Hypothesis

Reject the Null Hypothesis

Homework Answers

Answer #1

The statistical software output for this problem is:

Chi-Square goodness-of-fit results:
Observed: Oi
Expected: Ei

N DF Chi-Square P-value
201 8 24.848972 0.0016
Observed Expected
49 60.501
31 35.376
24 25.125
14 19.497
15 15.879
20 13.467
21 11.658
20 10.251
7 9.246

Hence,

a) Hypotheses:

Ho: The given distribution follows Benford's law.

Ha: The given distribution does not follow Benford's law.

b) Level of significance as 0.01 is an appropriate choice because we need more preciseness for testing this data.

c) p - Value = 0.0016

d) Reject the Null Hypothesis

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You might think that if you looked at the first digit in randomly selected numbers that...
You might think that if you looked at the first digit in randomly selected numbers that the distribution would be uniform. Actually, it is not! Simon Newcomb and later Frank Benford both discovered that the digits occur according to the following distribution: (digit, probability) (1,0.301),(2,0.176),(3,0.125),(4,0.097),(5,0.079),(6,0.067),(7,0.058),(8,0.051),(9,0.046)(1,0.301),(2,0.176),(3,0.125),(4,0.097),(5,0.079),(6,0.067),(7,0.058),(8,0.051),(9,0.046) The IRS currently uses Benford's Law to detect fraudulent tax data. Suppose you work for the IRS and are investigating an individual suspected of embezzling. The first digit of 145 checks to a supposed company...
ou might think that if you looked at the first digit in randomly selected numbers that...
ou might think that if you looked at the first digit in randomly selected numbers that the distribution would be uniform. Actually, it is not! Simon Newcomb and later Frank Benford both discovered that the digits occur according to the following distribution: (digit, probability) (1,0.301),(2,0.176),(3,0.125),(4,0.097),(5,0.079),(6,0.067),(7,0.058),(8,0.051),(9,0.046)(1,0.301),(2,0.176),(3,0.125),(4,0.097),(5,0.079),(6,0.067),(7,0.058),(8,0.051),(9,0.046) The IRS currently uses Benford's Law to detect fraudulent tax data. Suppose you work for the IRS and are investigating an individual suspected of embezzling. The first digit of 166 checks to a supposed company...
The first significant digit in any number must be​ 1, 2,​ 3, 4,​ 5, 6,​ 7,...
The first significant digit in any number must be​ 1, 2,​ 3, 4,​ 5, 6,​ 7, 8, or 9. It was discovered that first digits do not occur with equal frequency. Probabilities of occurrence to the first digit in a number are shown in the accompanying table. The probability distribution is now known as​ Benford's Law. For​ example, the following distribution represents the first digits in 219 allegedly fraudulent checks written to a bogus company by an employee attempting to...
The first significant digit in any number must be​ 1, 2,​ 3, 4,​5, 6,​ 7, 8,...
The first significant digit in any number must be​ 1, 2,​ 3, 4,​5, 6,​ 7, 8, or 9. It was discovered that first digits do not occur with equal frequency. Probabilities of occurrence to the first digit in a number are shown in the accompanying table. The probability distribution is now known as​ Benford's Law. For​example, the following distribution represents the first digits in 232 allegedly fraudulent checks written to a bogus company by an employee attempting to embezzle funds...
Benford's Law claims that numbers chosen from very large data files tend to have "1" as...
Benford's Law claims that numbers chosen from very large data files tend to have "1" as the first nonzero digit disproportionately often. In fact, research has shown that if you randomly draw a number from a very large data file, the probability of getting a number with "1" as the leading digit is about 0.301. Suppose you are an auditor for a very large corporation. The revenue report involves millions of numbers in a large computer file. Let us say...
Recall that Benford's Law claims that numbers chosen from very large data files tend to have...
Recall that Benford's Law claims that numbers chosen from very large data files tend to have "1" as the first nonzero digit disproportionately often. In fact, research has shown that if you randomly draw a number from a very large data file, the probability of getting a number with "1" as the leading digit is about 0.301. Now suppose you are an auditor for a very large corporation. The revenue report involves millions of numbers in a large computer file....
Recall that Benford's Law claims that numbers chosen from very large data files tend to have...
Recall that Benford's Law claims that numbers chosen from very large data files tend to have "1" as the first nonzero digit disproportionately often. In fact, research has shown that if you randomly draw a number from a very large data file, the probability of getting a number with "1" as the leading digit is about 0.301. Now suppose you are an auditor for a very large corporation. The revenue report involves millions of numbers in a large computer file....
Recall that Benford's Law claims that numbers chosen from very large data files tend to have...
Recall that Benford's Law claims that numbers chosen from very large data files tend to have "1" as the first nonzero digit disproportionately often. In fact, research has shown that if you randomly draw a number from a very large data file, the probability of getting a number with "1" as the leading digit is about 0.301. Now suppose you are the auditor for a very large corporation. The revenue file contains millions of numbers in a large computer data...
Recall that Benford's Law claims that numbers chosen from very large data files tend to have...
Recall that Benford's Law claims that numbers chosen from very large data files tend to have "1" as the first nonzero digit disproportionately often. In fact, research has shown that if you randomly draw a number from a very large data file, the probability of getting a number with "1" as the leading digit is about 0.301. Now suppose you are an auditor for a very large corporation. The revenue report involves millions of numbers in a large computer file....
Recall that Benford's Law claims that numbers chosen from very large data files tend to have...
Recall that Benford's Law claims that numbers chosen from very large data files tend to have "1" as the first nonzero digit disproportionately often. In fact, research has shown that if you randomly draw a number from a very large data file, the probability of getting a number with "1" as the leading digit is about 0.301. Now suppose you are the auditor for a very large corporation. The revenue file contains millions of numbers in a large computer data...