Question

Assume that the heights of 30,000 male students at a university are normally distributed with a...

Assume that the heights of 30,000 male students at a university are normally distributed with a mean of 68.0 inches and a standard deviation of 3.0 inches. A random sample of 35 students is taken and the mean is calculated. What is the probability that this mean value will be between 66.8 inches and 68.8 inches?

Homework Answers

Answer #1

Solution :

= / n = 3 / 35

= P[(66.8 - 68) / 3 / 35 < ( - ) / < (68.8 - 68) / 3 / 35)]

= P(-2.37 < Z < 1.58)

= P(Z < 1.58) - P(Z < -2.37)

= 0.9429 - 0.0089

= 0.9340

Probability = 0.9340

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Given that the heights of 300 students are normally distributed with a mean of 68.0...
1. Given that the heights of 300 students are normally distributed with a mean of 68.0 inches and a Standard Deviation of 3.0 inches, determine how many students have heights... (a) ... greater than 71 inches (b) ... less than or equal to 65 inches (c) ... between 65 inches and 71 inches inclusive (d) ... between 59 inches and 62 inches inclusive Assume the measurements are recorded to the nearest inch. 2. If the mean and standard deviation of...
The heights of male students are known to be normally distributed. One student in the class...
The heights of male students are known to be normally distributed. One student in the class claims that the mean height is 68 inches. Another student claims that it is greater than 68 inches, and to support his claim takes an SRS of 16 male students and finds a sample mean of 69.3 inches and the standard deviation of his sample is 2.45 inches. Is this sufficient evidence that the mean height of all male students is greater than 68...
Assume that the heights of men are normally distributed with a mean of 66.8 inches and...
Assume that the heights of men are normally distributed with a mean of 66.8 inches and a standard deviation of 6.7 inches. If 64 men are randomly selected, find the probability that they have a mean height greater than 67.8 inches.
) Suppose College male students’ heights are normally distributed with a mean of µ = 69.5...
) Suppose College male students’ heights are normally distributed with a mean of µ = 69.5 inches and a standard deviation of σ =2.8 inches. a) What is the probability that randomly selected male is at least 70.5 inches tall? b) If one male student is randomly selected, find the probability that his height is less than 65.2 inches or greater than 71.2 inches. c) How tall is Shivam if only 30.5% of students are taller than him ? d)...
Suppose that the heights of students are normally distributed with mean 67 inches and standard deviation...
Suppose that the heights of students are normally distributed with mean 67 inches and standard deviation 3 inches. (a) What is the probability that a randomly chosen student is at least 69 inches tall? (b) What is the probability that the mean height of a random sample of 5 students is at least 69 inches? (c) What is the probability that the mean height of a random sample of 20 students is at least 69 inches?
Assume the heights of men are normally distributed, with mean 73 inches and standard deviation 4...
Assume the heights of men are normally distributed, with mean 73 inches and standard deviation 4 inches. If a random sample of nine men is selected, what is the probability that the mean height is between 72 and 74 inches? (Use 3 decimal places.)
1.The height of an adult male in the United States is approximately normally distributed with a...
1.The height of an adult male in the United States is approximately normally distributed with a mean of 69.3 inches and a standard deviation of 2.8 inches. Find the percentile P76 for the heights of adult males in the United States. Round Answer to 4 decimal places. 2. The height of an adult male in the United States is approximately normally distributed with a mean of 69.3 inches and a standard deviation of 2.8 inches. Assume that such an individual...
9. Heights of male students are known to be normally distributed. One student in the class...
9. Heights of male students are known to be normally distributed. One student in the class claims that the mean height is 68 inches. Another student claims that the mean height is greater than 68 inches. A SRS of 16 male students has x = 69.3 inches and s = 2.45 inches. Is this sufficient evidence at the 5% level that the mean height of all male students is greater than 68 inches?
Assume that women's heights are normally distributed with a mean of 45.7 inches and a standard...
Assume that women's heights are normally distributed with a mean of 45.7 inches and a standard deviation of 2.25 inches. If 900 women are randomly selected, find the probability that they have a mean height between 45 inches and 45.6 inches.
The heights of 18-year-old men are normally distributed, with a mean of 68 inches and a...
The heights of 18-year-old men are normally distributed, with a mean of 68 inches and a standard deviation of 3 inches.  If a random sample of 45 men in this age group is selected, what is the probability that the sample mean is between 66 and 67.6 inches?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT