Question

Let A={∅,{1,{2}},1}A={∅,{1,{2}},1}. Then the powerset of A is p(A)=

Let A={∅,{1,{2}},1}A={∅,{1,{2}},1}. Then the powerset of A is p(A)=

Homework Answers

Answer #1

Dear student I provided a detailed solution.. If you are satisfied Please Thumbs Up....I need your valuable support... Thanks

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let p be an odd prime, and let x = [(p−1)/2]!. Prove that x^2 ≡ (−1)^(p+1)/2...
Let p be an odd prime, and let x = [(p−1)/2]!. Prove that x^2 ≡ (−1)^(p+1)/2 (mod p). (You will need Wilson’s theorem, (p−1)! ≡−1 (mod p).) This gives another proof that if p ≡ 1 (mod 4), then x^2 ≡ −1 (mod p) has a solution.
Let f(x) = x^2 + 1, x ∈ [2, 7]. Let P = {2,4,5,7}. Find L(f,P)...
Let f(x) = x^2 + 1, x ∈ [2, 7]. Let P = {2,4,5,7}. Find L(f,P) and U(f,P).
   Let {Xi} be i.i.d. random variables with P(Xi=−1) = P(Xi= 1) = 1/2. Let Sn=...
   Let {Xi} be i.i.d. random variables with P(Xi=−1) = P(Xi= 1) = 1/2. Let Sn= 1 +X1+. . .+Xn be symmetric simple random walk with initial point S0 = 1. Find the probability that Sn eventually hits the point 0. Hint: Define the events A={Sn= 0 for some n} and for M >1, AM = {Sn hits 0 before hitting M}. Show that AM ↗ A.
(a) Let Y1,Y2,··· ,Yn be i.i.d. with geometric distribution P(Y = y) = p(1−p)y-1 y=1, 2,...
(a) Let Y1,Y2,··· ,Yn be i.i.d. with geometric distribution P(Y = y) = p(1−p)y-1 y=1, 2, ........, 0<p<1. Find a sufficient statistic for p. (b) Let Y1,··· ,yn be a random sample of size n from a beta distribution with parameters α = θ and β = 2. Find the sufficient statistic for θ.
Let p(n) = 3^(3n−2) + 2^(3n+1) for each n ∈ N Show that p(n + 1)...
Let p(n) = 3^(3n−2) + 2^(3n+1) for each n ∈ N Show that p(n + 1) − p(n) = 26(3^(3n−2 )) + 7(2^(3n+1)). Prove that p(n) is divisible by 19
Let X 1 , X 2 and X 3 be independently distributed as Bernoulli(p) and let...
Let X 1 , X 2 and X 3 be independently distributed as Bernoulli(p) and let two estimators of p be defined as pˆ 1 = X and pˆ 2 = X 1 + X 2 − X 3 . a) Which estimator(s) is (are) unbiased? b) Obtain their variances. c) Can you say one estimator is better than the other?
1. Let D: P = 20 – Q/4. Calculate when ɛ when P = $10. 2....
1. Let D: P = 20 – Q/4. Calculate when ɛ when P = $10. 2. Let D: P = 1/Q^2. Calculate ɛ along the demand curve. 3. Suppose e = -2, if P is up by 3% by how much will total revenue change?
91. Let X be a RV with support set {0, 1, 2}, p(1) = 0.3, and...
91. Let X be a RV with support set {0, 1, 2}, p(1) = 0.3, and p(2) = 0.5. Calculate E[X]. Let X be a discrete RV. Define the expected value E[X] of X. Is E[X] constant or random? Why? 92. Suppose X is a RV with support {−1,0,1} where p(−1) = q and p(1) = p. What relationship must hold between p and q to ensure that E[X] = 0? 93. Let X be a discrete RV and a,...
Let X ? N(10, 16). Find 1. P(X ? 4) 2. P(?1 < X < 17)...
Let X ? N(10, 16). Find 1. P(X ? 4) 2. P(?1 < X < 17) 3. P(X > 14) 4. P(|X ? 10| > 8)
Let X be a random variable with probability mass function P(X =1) =1/2, P(X=2)=1/3, P(X=5)=1/6 (a)...
Let X be a random variable with probability mass function P(X =1) =1/2, P(X=2)=1/3, P(X=5)=1/6 (a) Find a function g such that E[g(X)]=1/3 ln(2) + 1/6 ln(5). You answer should give at least the values g(k) for all possible values of k of X, but you can also specify g on a larger set if possible. (b) Let t be some real number. Find a function g such that E[g(X)] =1/2 e^t + 2/3 e^(2t) + 5/6 e^(5t)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT