Question

Let p(n) = 3^(3n−2) + 2^(3n+1) for each n ∈ N Show that p(n + 1)...

Let p(n) = 3^(3n−2) + 2^(3n+1) for each n ∈ N

Show that p(n + 1) − p(n) = 26(3^(3n−2 )) + 7(2^(3n+1)).

Prove that p(n) is divisible by 19

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A = 3 1 0 2 Prove An = 3n 3n-2n   0 2n for all...
Let A = 3 1 0 2 Prove An = 3n 3n-2n   0 2n for all n ∈ N
1. Use mathematical induction to show that, ∀n ≥ 3, 2n2 + 1 ≥ 5n 2....
1. Use mathematical induction to show that, ∀n ≥ 3, 2n2 + 1 ≥ 5n 2. Letting s1 = 0, find a recursive formula for the sequence 0, 1, 3, 7, 15,... 3. Evaluate. (a) 55mod 7. (b) −101 div 3. 4. Prove that the sum of two consecutive odd integers is divisible by 4 5. Show that if a|b then −a|b. 6. Prove or disprove: For any integers a,b, c, if a ∤ b and b ∤ c, then...
Let n be a positive odd integer, prove gcd(3n, 3n+16) = 1.
Let n be a positive odd integer, prove gcd(3n, 3n+16) = 1.
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also...
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also odd. 3.b) Let x and y be integers. Prove that if x is even and y is divisible by 3, then the product xy is divisible by 6. 3.c) Let a and b be real numbers. Prove that if 0 < b < a, then (a^2) − ab > 0.
Show: ∀ n ≥ 7, n! > 3n
Show: ∀ n ≥ 7, n! > 3n
Exercise 6.6. Let the inductive set be equal to all natural numbers, N. Prove the following...
Exercise 6.6. Let the inductive set be equal to all natural numbers, N. Prove the following propositions. (a) ∀n, 2n ≥ 1 + n. (b) ∀n, 4n − 1 is divisible by 3. (c) ∀n, 3n ≥ 1 + 2 n. (d) ∀n, 21 + 2 2 + ⋯ + 2 n = 2 n+1 − 2.
Let P(n) be the statement that 13 + 23 + · · · + n 3...
Let P(n) be the statement that 13 + 23 + · · · + n 3 = (n(n + 1)/2)2 for the positive integer n. Prove that P(n) is true for n ≥ 1.
Prove that 1+2+3+...+ n is divisible by n if n is odd. Always true that 1+2+3+...+...
Prove that 1+2+3+...+ n is divisible by n if n is odd. Always true that 1+2+3+...+ n is divisible by n+1 if n is even? Provide a proof.
4. Prove that if p is a prime number greater than 3, then p is of...
4. Prove that if p is a prime number greater than 3, then p is of the form 3k + 1 or 3k + 2. 5. Prove that if p is a prime number, then n √p is irrational for every integer n ≥ 2. 6. Prove or disprove that 3 is the only prime number of the form n2 −1. 7. Prove that if a is a positive integer of the form 3n+2, then at least one prime divisor...
prove that 2^2n-1 is divisible by 3 for all natural numbers n .. please show in...
prove that 2^2n-1 is divisible by 3 for all natural numbers n .. please show in detail trying to learn.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT