Question

Lex X and Y be a random variables, with joint distribution. The melancolia distribution, given by...

Lex X and Y be a random variables, with joint distribution. The melancolia distribution, given by the table 9.1. a) What is (P = Y)?, b) (P + Y = 5)?, c) (1 < X <-3, 1 < Y <- 3)?

Homework Answers

Answer #1

please check it ...you didn't give variable values...but i have some information regarding that i submitted this answer....if the values are different from as i done..please mention in the comment

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The joint probability distribution of two random variables X and Y is given in the following...
The joint probability distribution of two random variables X and Y is given in the following table X Y → ↓ 0 1 2 3 f(x) 2 1/12 1/12 1/12 1/12 3 1/12 1/6 1/12 0 4 1/12 1/12 0 1/6 f(y) a) Find the marginal density of X and the marginal density of Y. (add them to the above table) b) Are X and Y independent? c) Compute the P{Y>1| X>2} d) Compute the expected value of X. e)...
Consider joint Probability distribution of two random variables X and Y given as following f(x,y)   X...
Consider joint Probability distribution of two random variables X and Y given as following f(x,y)   X        2   4   6 Y   1   0.1   0.15   0.06    3   0.17   0.1   0.18    5   0.04   0.07   0.13 (a)   Find expected value of g(X,Y) = XY2 (b)   Find Covariance of Cov(x,y)
Let X and Y be discrete random variables, their joint pmf is given as ?(x,y)= ?(?...
Let X and Y be discrete random variables, their joint pmf is given as ?(x,y)= ?(? + ? − 2)/(B + 1) for 1 < X ≤ 4, 1 < Y ≤ 4 Where B is the last digit of your registration number ( B=3) a) Find the value of ? b) Find the marginal pmf of ? and ? c) Find conditional pmf of ? given ? = 3
Random variables X and Y assume values 1, 2 and 3. Their joint probability distribution is...
Random variables X and Y assume values 1, 2 and 3. Their joint probability distribution is given as follows: P(X=Y=1) = min( 0.39, 0.19 ) , P(X=Y=2) = min( 0.19, 0.42 ) and   P(X=Y=3) = min( 0.42 0.39, ), .... Their marginal probability distributions are as follows: P(X=1) = 0.39, P(Y=1) = 0.19,    P(X=2) = 0.19, P(Y=2) = 0.42, P(X=3) = 0.42 and PY=3) = 0.39,    Calculate the variance of the sum (X + Y)
X, Y and Z are Bernoulli random variables with the following joint distribution: P(x, y, z)...
X, Y and Z are Bernoulli random variables with the following joint distribution: P(x, y, z) = .2 if (x, y, z) = (0, 0, 0) .1 if (x, y, z) = (0, 0, 1) 0 if (x, y, z) = (0, 1, 0) .1 if (x, y, z) = (0, 1, 1) .1 if (x, y, z) = (1, 0, 0) 0 if (x, y, z) = (1, 0, 1) .2 if (x, y, z) = (1, 1, 0)...
The joint probability density function of two random variables (X and Y) is given by fX,Y...
The joint probability density function of two random variables (X and Y) is given by fX,Y (x, y) = ( C √y (y ^(α+1)) exp {( − y(2β+x ^2 ) )/2 } , x ∈ (−∞,∞), y ∈ [0,∞), 0 otherwise. (a) Find C. (b) Find the marginal density of Y . What type of distribution does Y follow? (c) Find the conditional density of X | Y . What type of distribution is this?
Random variables X and Y assume values 1, 2 and 3. Their joint probability distribution is...
Random variables X and Y assume values 1, 2 and 3. Their joint probability distribution is given as follows: P(X=Y=1) = min( 0.32, 0.5 ) , P(X=Y=2) = min( 0.18, 0.18 ) and   P(X=Y=3) = min( 0.5 0.32, ), .... Their marginal probability distributions are as follows: P(X=1) = 0.32, P(Y=1) = 0.5,    P(X=2) = 0.18, P(Y=2) = 0.18, P(X=3) = 0.5 and P(Y=3) = 0.32,    Calculate the variance of the sum (X + Y).
X and Y are continuous random variables. Their joint probability distribution function is : f(x,y) =...
X and Y are continuous random variables. Their joint probability distribution function is : f(x,y) = 1/5(y+2) , 0 < y < 1, y-1 < x < y +1 = 0, otherwise a) Find marginal density of Y, fy(y) b) Calculate E[X | Y = 0]
Problems 9 and 10 refer to the discrete random variables X and Y whose joint distribution...
Problems 9 and 10 refer to the discrete random variables X and Y whose joint distribution is given in the following table. Y=-1 Y=0 Y=1 X=1 1/4 1/8 0    X=2 1/16 1/16 1/8 X=3 1/16 1/16 1/4 P9: Compute the marginal distributions of X and Y, and use these to compute E(X), E(Y), Var(X), and Var(Y). P10: Compute Cov(X, Y) and the correlation ρ for the random variables X and Y. Are X and Y independent?
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y)...
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y) = 1(0 < x < 1,0 < y < 1). (a) Find P(X + Y ≤ 1). (b) Find P(|X −Y|≤ 1/2). (c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R. (d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY of Y . (f) Find the conditional pdf f(x|y) of X|Y = y for 0...