X, Y and Z are Bernoulli random variables with the following joint distribution:
P(x, y, z) =
.2 if (x, y, z) = (0, 0, 0)
.1 if (x, y, z) = (0, 0, 1)
0 if (x, y, z) = (0, 1, 0)
.1 if (x, y, z) = (0, 1, 1)
.1 if (x, y, z) = (1, 0, 0)
0 if (x, y, z) = (1, 0, 1)
.2 if (x, y, z) = (1, 1, 0)
.3 if (x, y, z) = (1, 1, 1)
a) Find the marginal distribution of Z.
b)Find the joint distribution of X and Y , conditional on Z = 1.
c) Find the correlation coefficient between X and Y , conditional on Z = 1.
a)
add probabilities for Z=0
and Z=1
P(Z=0) = 0.2+0 + 0.1 + 0.2 = 0.5
P(Z=1) = 0.1 + 0.1 + 0 + 0.3=0.5
z | 0 | 1 | total |
P(Z=z) | 0.5 | 0.5 | 1 |
b)
row represent X, column represent Y
condition Z=1
P(Z=1)=0.5
X/Y | 0 | 1 | total |
0 | 0.1/0.5=0.2 | 0.1/0.5=0.2 | 0.4 |
1 | 0/0.5=0 | =0.3/0.5=0.6 | 0.6 |
total | 0.2 | 0.8 | 1 |
c)
correlation coefficient between X and Y , conditional on Z = 1
X | Y | P(X,Y) | X*Y*P(X,Y) | X*P(X) | (X-E[X])²P(X) | Y*P(X,Y) | (Y-E[Y])²P(Y) |
0 | 0 | 0.2 | 0 | 0 | 0.072 | 0 | 0.128 |
0 | 1 | 0.2 | 0 | 0 | 0.072 | 0.2 | 0.008 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0.6 | 0.6 | 0.6 | 0.096 | 0.6 | 0.024 |
total | 0.6 | 0.6 | 0.24 | 0.8 | 0.16 |
co variance=E[XY]-E[X]E[Y]=ΣXYP(X,Y) + ΣXP(X)+ΣYP(Y) = 0.6 - 0.6*0.8 = 0.12
std dev of X=√(X-E[X])²P(X)=√0.24
std dev of Y=√(Y-E[Y])²P(Y) =√0.16
correlation=cov(x,y)/(std of x*std dev of y) = 0.12/(√0.24*√0.16) = 0.6124
Get Answers For Free
Most questions answered within 1 hours.