Question

The joint probability density function of two random variables (X and Y) is given by fX,Y (x, y) = ( C √y (y ^(α+1)) exp {( − y(2β+x ^2 ) )/2 } , x ∈ (−∞,∞), y ∈ [0,∞), 0 otherwise. (a) Find C. (b) Find the marginal density of Y . What type of distribution does Y follow? (c) Find the conditional density of X | Y . What type of distribution is this?

Answer #1

Let X and Y be a random variables with the joint probability
density function fX,Y (x, y) = { cx2y, 0 < x2 < y < x for
x > 0 0, otherwise }. compute the marginal probability density
functions fX(x) and fY (y). Are the random variables X and Y
independent?.

Let X and Y be two continuous random variables with joint
probability density function
f(x,y) =
6x 0<y<1, 0<x<y,
0 otherwise.
a) Find the marginal density of Y .
b) Are X and Y independent?
c) Find the conditional density of X given Y = 1 /2

For continuous random variables X and Y with joint probability
density function. f(x,y) = xe−(x+y) when x > 0 and y
> 0 f(x,y) = 0 otherwise
a. Find the conditional density F xly (xly)
b. Find the marginal probability density function fX (x)
c. Find the marginal probability density function fY (y).
d. Explain if X and Y are independent

Let fX,Y be the joint density function of the random variables X
and Y which is equal to fX,Y (x, y) = { x + y if 0 < x, y <
1, 0 otherwise. } Compute the probability density function of X + Y
. Referring to the problem above, compute the marginal probability
density functions fX(x) and fY (y). Are the random variables X and
Y independent?

Let X and Y be a random variables with the joint probability
density function fX,Y (x, y) = { e −x−y , 0 < x, y < ∞ 0,
otherwise } . a. Let W = max(X, Y ) Compute the probability density
function of W. b. Let U = min(X, Y ) Compute the probability
density function of U. c. Compute the probability density function
of X + Y .

Let X and Y be two continuous random variables with joint
probability density function f(x,y) = xe^−x(y+1), 0 , 0< x <
∞,0 < y < ∞ otherwise
(a) Are X and Y independent or not? Why?
(b) Find the conditional density function of Y given X = 1.(

Q1) The joint probability density function of the random
variables X and Y is given by ??,? (?, ?) = { ?, 0 < ? < ?
< 1 0, ??ℎ?????? a) Find the constant ? b) Find the marginal
PDFs of X and Y. c) Find the conditional PDF of X given Y, i.e.,
?(?|?) d) Find the variance of X given Y, i.e., ???(?|?) e) Are X
and Y statistically independent? Explain why.

* The random variables X and Y have a joint density function
given by fX,Y(x, y) = ⇢ 1/y, 0 < y < 1, 0 < x < y, 0,
otherwise. Compute (a) Cov(X,Y) and (b) Corr(X,Y).

Consider the random variables X and Y with the following joint
probability density function:
fX,Y (x, y) = xe-xe-y, x > 0, y
> 0
(a) Suppose that U = X + Y and V = Y/X. Express X and Y in terms of
U and V .
(b) Find the joint PDF of U and V .
(c) Find and identify the marginal PDF of U
(d) Find the marginal PDF of V
(e) Are U and V independent?

a) The joint probability density function of the random
variables X, Y is given as
f(x,y) =
8xy
if 0≤y≤x≤1 , and 0
elsewhere.
Find the marginal probability density functions.
b) Find the expected values EX and
EY for the density function above
c) find Cov X,Y .

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 27 minutes ago

asked 30 minutes ago

asked 49 minutes ago

asked 52 minutes ago

asked 53 minutes ago

asked 53 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago