Question

Random variables X and Y assume values 1, 2 and 3. Their joint probability distribution is...

Random variables X and Y assume values 1, 2 and 3.
Their joint probability distribution is given as follows:
P(X=Y=1) = min( 0.32, 0.5 ) ,
P(X=Y=2) = min( 0.18, 0.18 ) and  
P(X=Y=3) = min( 0.5 0.32, ), ....
Their marginal probability distributions are as follows:
P(X=1) = 0.32, P(Y=1) = 0.5,   
P(X=2) = 0.18, P(Y=2) = 0.18,
P(X=3) = 0.5 and P(Y=3) = 0.32,   
Calculate the variance of the sum (X + Y).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Random variables X and Y assume values 1, 2 and 3. Their joint probability distribution is...
Random variables X and Y assume values 1, 2 and 3. Their joint probability distribution is given as follows: P(X=Y=1) = min( 0.39, 0.19 ) , P(X=Y=2) = min( 0.19, 0.42 ) and   P(X=Y=3) = min( 0.42 0.39, ), .... Their marginal probability distributions are as follows: P(X=1) = 0.39, P(Y=1) = 0.19,    P(X=2) = 0.19, P(Y=2) = 0.42, P(X=3) = 0.42 and PY=3) = 0.39,    Calculate the variance of the sum (X + Y)
The joint probability distribution of two random variables X and Y is given in the following...
The joint probability distribution of two random variables X and Y is given in the following table X Y → ↓ 0 1 2 3 f(x) 2 1/12 1/12 1/12 1/12 3 1/12 1/6 1/12 0 4 1/12 1/12 0 1/6 f(y) a) Find the marginal density of X and the marginal density of Y. (add them to the above table) b) Are X and Y independent? c) Compute the P{Y>1| X>2} d) Compute the expected value of X. e)...
MARIGINAL AND JOINT DISTRIBUTIONS The joint distribution of X and Y is as follows. Values of...
MARIGINAL AND JOINT DISTRIBUTIONS The joint distribution of X and Y is as follows. Values of Y 1 0 P{X=x} Values of X 1 0.1 0.2 0.3 0 0.3 0.4 0.7 P{Y=y} 0.4 0.6 1.0 a. Find the marginal distribution of X and Y. b. Find the conditional distribution of X given y = 1 c. Compute the conditional expectation of Y given X=1, E{Y=y|X=1}
Consider joint Probability distribution of two random variables X and Y given as following f(x,y)   X...
Consider joint Probability distribution of two random variables X and Y given as following f(x,y)   X        2   4   6 Y   1   0.1   0.15   0.06    3   0.17   0.1   0.18    5   0.04   0.07   0.13 (a)   Find expected value of g(X,Y) = XY2 (b)   Find Covariance of Cov(x,y)
X and Y are continuous random variables. Their joint probability distribution function is : f(x,y) =...
X and Y are continuous random variables. Their joint probability distribution function is : f(x,y) = 1/5(y+2) , 0 < y < 1, y-1 < x < y +1 = 0, otherwise a) Find marginal density of Y, fy(y) b) Calculate E[X | Y = 0]
Consider a joint probability function for discrete random variables X and Y. To get the marginal...
Consider a joint probability function for discrete random variables X and Y. To get the marginal probability function for X: Select one: a. We set x equal to 1. b. For each value y, we sum the joint probability function over all the values of x. c. We set y equal to 1. d. For each value x, we sum the joint probability function over all the values of y.
The probability distribution of a couple of random variables (X, Y) is given by : X/Y...
The probability distribution of a couple of random variables (X, Y) is given by : X/Y 0 1 2 -1 a 2a a 0 0 a a 1 3a 0 a 1) Find "a" 2) Find the marginal distribution of X and Y 3) Are variables X and Y independent? 4) Calculate V(2X+3Y) and Cov(2X,5Y)
If the joint probability distribution of X and Y is given by: f (x, y) =...
If the joint probability distribution of X and Y is given by: f (x, y) = 3k (x + y), for x = 0, 1, 2, 3; y = 0, 1, 2. a) .- Find the constant k. b) .- Using the table of the joint distribution and the marginal distributions, determine if variable X and variable Y are independent.
Lex X and Y be a random variables, with joint distribution. The melancolia distribution, given by...
Lex X and Y be a random variables, with joint distribution. The melancolia distribution, given by the table 9.1. a) What is (P = Y)?, b) (P + Y = 5)?, c) (1 < X <-3, 1 < Y <- 3)?
The random variable X can take on the values 1, 2 and 3 and the random...
The random variable X can take on the values 1, 2 and 3 and the random variable Y can take on the values 1, 3, and 4. The joint probability distribution of X and Y is given in the following table: Y 1 3 4 X 1 0.1 0.15 0.1 2 0.1 0.1 0.1 3 0.1 0.2                         a. What value should go in the blank cell? b. Describe in words and notation the event that has probability 0.2 in...