Question

rove or disprove that ?̅y + y? =?

rove or disprove that ?̅y + y? =?

Homework Answers

Answer #1

Here x and y are two Boolean variable and take value 0 or 1 .

we will use some properties of Boolean algebra for this :

Property :    x.( y + z ) = x.y + x.z ( Distributive Property)

Property : (Complement property )

Property : x.1 = x ( Identity law)

Property : x.y = y.x ( commutative law)

So for our question :

Proof: using distributive property ,

  

using Complementary property,

  

Now using identity Law ,  

Hence proved   

Please do upvote if the answer helped you and comment if any doubt . Thanks

  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove or disprove following by giving examples: (a) If X ⊂ Y and X ⊂ Z,...
Prove or disprove following by giving examples: (a) If X ⊂ Y and X ⊂ Z, then X ⊂ Y ∩ Z (b) If X ⊆ Y and Y ⊆ Z, then X ⊆ Z (c) If X ∈ Y and Y ∈ Z, then X ∈ Z
Prove or disprove that there do not exist z, y, and z are positive integers such...
Prove or disprove that there do not exist z, y, and z are positive integers such that X7 - Y5 = Z4
Prove or disprove the following statements. a) ∀a, b ∈ N, if ∃x, y ∈ Z...
Prove or disprove the following statements. a) ∀a, b ∈ N, if ∃x, y ∈ Z and ∃k ∈ N such that ax + by = k, then gcd(a, b) = k b) ∀a, b ∈ Z, if 3 | (a 2 + b 2 ), then 3 | a and 3 | b.
Prove or disprove the following statements. Remember to disprove a statement you have to show that...
Prove or disprove the following statements. Remember to disprove a statement you have to show that the statement is false. Equivalently, you can prove that the negation of the statement is true. Clearly state it, if a statement is True or False. In your proof, you can use ”obvious facts” and simple theorems that we have proved previously in lecture. (a) For all real numbers x and y, “if x and y are irrational, then x+y is irrational”. (b) For...
(a) Prove or disprove the statement (where n is an integer): If 3n + 2 is...
(a) Prove or disprove the statement (where n is an integer): If 3n + 2 is even, then n is even. (b) Prove or disprove the statement: For irrational numbers x and y, the product xy is irrational.
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}....
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}. a) Prove or disprove: A ⊆ X b) Prove or disprove: X ⊆ A 4 c) Prove or disprove: P(X ∪ Y ) ⊆ P(X) ∪ P(Y ) ∪ P(X ∩ Y ) d) Prove or disprove: P(X) ∪ P(Y ) ∪ P(X ∩ Y ) ⊆ P(X ∪ Y )
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}....
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}. a) Prove or disprove: A ⊆ X b) Prove or disprove: X ⊆ A c) Prove or disprove: P(X ∪ Y ) ⊆ P(X) ∪ P(Y ) ∪ P(X ∩ Y ) d) Prove or disprove: P(X) ∪ P(Y ) ∪ P(X ∩ Y ) ⊆ P(X ∪ Y )
Here are two statements about positive real numbers. Prove or disprove each of the statements ∀x,...
Here are two statements about positive real numbers. Prove or disprove each of the statements ∀x, ∃y with the property that xy < y2 ∃x such that ∀y, xy < y2 .
For Problems #5 – #9, you willl either be asked to prove a statement or disprove...
For Problems #5 – #9, you willl either be asked to prove a statement or disprove a statement, or decide if a statement is true or false, then prove or disprove the statement. Prove statements using only the definitions. DO NOT use any set identities or any prior results whatsoever. Disprove false statements by giving counterexample and explaining precisely why your counterexample disproves the claim. ********************************************************************************************************* (5) (12pts) Consider the < relation defined on R as usual, where x <...
When we say Prove or disprove the following statements, “Prove” means you show the statement is...
When we say Prove or disprove the following statements, “Prove” means you show the statement is true proving the correct statement using at most 3 lines or referring to a textbook theorem. “Disprove” means you show a statement is wrong by giving a counterexample why that is not true). Are the following statements true or not? Prove or disprove these one by one. Show how the random variable X looks in each case. (a) E[X] < 0 for some random...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT