Question

(a) Prove or disprove the statement (where n is an integer): If 3n + 2 is...

(a) Prove or disprove the statement (where n is an integer): If 3n + 2 is even, then n is even.

(b) Prove or disprove the statement: For irrational numbers x and y, the product xy is irrational.

Homework Answers

Answer #1

.

Your honest feedback is very important for better results.

Thanks

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove or disprove the following statements. Remember to disprove a statement you have to show that...
Prove or disprove the following statements. Remember to disprove a statement you have to show that the statement is false. Equivalently, you can prove that the negation of the statement is true. Clearly state it, if a statement is True or False. In your proof, you can use ”obvious facts” and simple theorems that we have proved previously in lecture. (a) For all real numbers x and y, “if x and y are irrational, then x+y is irrational”. (b) For...
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also...
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also odd. 3.b) Let x and y be integers. Prove that if x is even and y is divisible by 3, then the product xy is divisible by 6. 3.c) Let a and b be real numbers. Prove that if 0 < b < a, then (a^2) − ab > 0.
Prove or disprove the following statement: 2^(n+k) is an element of O(2^n) for all constant integer...
Prove or disprove the following statement: 2^(n+k) is an element of O(2^n) for all constant integer values of k>0.
Prove that there are infinitely many primes of the form 3n+2, where n is a nonnegative...
Prove that there are infinitely many primes of the form 3n+2, where n is a nonnegative integer.
Discreet Math: Prove or disprove each statement a) For any real number x, the floor of...
Discreet Math: Prove or disprove each statement a) For any real number x, the floor of 2x = 2 the floor of x b) For any real number x, the floor of the ceiling of x = the ceiling of x c) For any real numbers x and y, the ceiling of x and the ceiling of y = the ceiling of xy
Perform the following tasks: a. Prove directly that the product of an even and an odd...
Perform the following tasks: a. Prove directly that the product of an even and an odd number is even. b. Prove by contraposition for arbitrary x does not equal -2: if x is irrational, then so is x/(x+2) c. Disprove: If x is irrational and y is irrational, then x+y is irrational.
Let n be a positive odd integer, prove gcd(3n, 3n+16) = 1.
Let n be a positive odd integer, prove gcd(3n, 3n+16) = 1.
Prove or disprove that 3|(n^3 − n) for every positive integer n.
Prove or disprove that 3|(n^3 − n) for every positive integer n.
Use Mathematical Induction to prove that 3n < n! if n is an integer greater than...
Use Mathematical Induction to prove that 3n < n! if n is an integer greater than 6.
Part #1: Prove or disprove (formally or informally): The sum of an integer and its cube...
Part #1: Prove or disprove (formally or informally): The sum of an integer and its cube is even. Part #2: Provide counterexamples to the following statements. If n2 > 0 then n > 0. If n is an even number, then n2 + 1 is prime. (n2 is n to the power of 2).