Question

Prove or disprove following by giving examples: (a) If X ⊂ Y and X ⊂ Z,...

Prove or disprove following by giving examples:

(a) If X ⊂ Y and X ⊂ Z, then X ⊂ Y ∩ Z
(b) If X ⊆ Y and Y ⊆ Z, then X ⊆ Z

(c) If X ∈ Y and Y ∈ Z, then X ∈ Z

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove or disprove the following statements. a) ∀a, b ∈ N, if ∃x, y ∈ Z...
Prove or disprove the following statements. a) ∀a, b ∈ N, if ∃x, y ∈ Z and ∃k ∈ N such that ax + by = k, then gcd(a, b) = k b) ∀a, b ∈ Z, if 3 | (a 2 + b 2 ), then 3 | a and 3 | b.
If X and Y are correlated and Y and Z are correlated, then X and Z...
If X and Y are correlated and Y and Z are correlated, then X and Z are correlated. prove or disprove?
When we say Prove or disprove the following statements, “Prove” means you show the statement is...
When we say Prove or disprove the following statements, “Prove” means you show the statement is true proving the correct statement using at most 3 lines or referring to a textbook theorem. “Disprove” means you show a statement is wrong by giving a counterexample why that is not true). Are the following statements true or not? Prove or disprove these one by one. Show how the random variable X looks in each case. (a) E[X] < 0 for some random...
5. Prove or disprove the following statements: (a) Let R be a relation on the set...
5. Prove or disprove the following statements: (a) Let R be a relation on the set Z of integers such that xRy if and only if xy ≥ 1. Then, R is irreflexive. (b) Let R be a relation on the set Z of integers such that xRy if and only if x = y + 1 or x = y − 1. Then, R is irreflexive. (c) Let R and S be reflexive relations on a set A. Then,...
Prove or disprove (a) Z[x]/(x^2 + 1), (b) Z[x]/(x^2 - 1) is an Integral domain. By...
Prove or disprove (a) Z[x]/(x^2 + 1), (b) Z[x]/(x^2 - 1) is an Integral domain. By showing (a) x^2+1 is a prime ideal or showing x^2 + 1 is not prime ideal. By showing (b) x^2-1 is a prime ideal or showing x^2 - 1 is not prime ideal. (Hint: R/I is an integral domain if and only if I is a prime ideal.)
Prove or disprove the following statements. Remember to disprove a statement you have to show that...
Prove or disprove the following statements. Remember to disprove a statement you have to show that the statement is false. Equivalently, you can prove that the negation of the statement is true. Clearly state it, if a statement is True or False. In your proof, you can use ”obvious facts” and simple theorems that we have proved previously in lecture. (a) For all real numbers x and y, “if x and y are irrational, then x+y is irrational”. (b) For...
(a) Prove or disprove the statement (where n is an integer): If 3n + 2 is...
(a) Prove or disprove the statement (where n is an integer): If 3n + 2 is even, then n is even. (b) Prove or disprove the statement: For irrational numbers x and y, the product xy is irrational.
Discreet Math: Prove or disprove each statement a) For any real number x, the floor of...
Discreet Math: Prove or disprove each statement a) For any real number x, the floor of 2x = 2 the floor of x b) For any real number x, the floor of the ceiling of x = the ceiling of x c) For any real numbers x and y, the ceiling of x and the ceiling of y = the ceiling of xy
4. Which of the follows are vector spaces? Prove or disprove. (a) The set {x =...
4. Which of the follows are vector spaces? Prove or disprove. (a) The set {x = αz | α ∈ R, z = (4, 6)T }. (b) The set of all 3 × 3 matrices which have all negative elements
Prove: Let x,y be in R such that x < y. There exists a z in...
Prove: Let x,y be in R such that x < y. There exists a z in R such that x < z < y. Given: Axiom 8.1. For all x,y,z in R: (i) x + y = y + x (ii) (x + y) + z = x + (y + z) (iii) x*(y + z) = x*y + x*z (iv) x*y = y*x (v) (x*y)*z = x*(y*z) Axiom 8.2. There exists a real number 0 such that for all...