Question

A point mass M is suspended in the middle of a string whose ends are fixed...

A point mass M is suspended in the middle of a string whose ends are fixed at the same level distance 2ℓ apart; the mass is distance h below the ends of the string. The total mass of the string is m < M. (a) Find the speed of sound waves along the string and (b) the principal frequency of string vibrations on either side of the mass. (c) Do you think this is the smallest vibration frequency in the system?

Homework Answers

Answer #1

As in String, the Frequency of standing waves is directly proportional to Tension.

Hence our first Goal is to find out the Tension

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at...
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at successive (that is, modes m and m + 1) frequencies of 38 Hz and 42 Hz respectively. The tension in the string is 720 N. What is the fundamental frequency of the standing wave? Hint: recall that every harmonic frequency of a standing wave is a multiple of the fundamental frequency. What is the speed of the wave in the string? What is the...
A string with both ends held fixed is vibrating in its third harmonic. The waves have...
A string with both ends held fixed is vibrating in its third harmonic. The waves have a speed of 193 m/s and a frequency of 235 Hz. The amplitude of the standing wave at an antinode is 0.380 cm. a)Calculate the amplitude at point on the string a distance of 16.0 cm from the left-hand end of the string. b)How much time does it take the string to go from its largest upward displacement to its largest downward displacement at...
A stretched string fixed at each end has a mass of 46.0 g and a length...
A stretched string fixed at each end has a mass of 46.0 g and a length of 9.00 m. The tension in the string is 52.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (Enter your answers from smallest to largest distance from one end of the string.) nodes: m m m m antinodes: m m m (b) What is the vibration frequency for this harmonic? Hz
A stretched string fixed at each end has a mass of 39.0 g and a length...
A stretched string fixed at each end has a mass of 39.0 g and a length of 7.20 m. The tension in the string is 44.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (Enter your answers from smallest to largest distance from one end of the string.) nodes: m m m m antinodes: m m m (b) What is the vibration frequency for this harmonic? Hz
A stretched string fixed at each end has a mass of 36.0 g and a length...
A stretched string fixed at each end has a mass of 36.0 g and a length of 7.60 m. The tension in the string is 48.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (Enter your answers from smallest to largest distance from one end of the string.) nodes: _____ m _____m _____m _____m antinodes: _____m _____m _____m (b) What is the vibration frequency for this harmonic? ________ Hz A train at a speed...
A thin taut string of mass 5.00 g is fixed at both ends and stretched such...
A thin taut string of mass 5.00 g is fixed at both ends and stretched such that it has two adjacent harmonics of 525 Hz and 630 Hz. The speed of a traveling wave on the string is 168 m/s. (a) Determine which harmonic corresponds to the 630 Hz frequency. (b) Find the linear mass density of this string. (c) Find the tension in the string.
A bob of mass m = 0.300 kg is suspended from a fixed point with a...
A bob of mass m = 0.300 kg is suspended from a fixed point with a massless string of length L = 21.0 cm . You will investigate the motion in which the string traces a conical surface with half-angle θ = 22.0 What tangential speed v must the bob have so that it moves in a horizontal circle with the string making an angle 22.0 ∘ with the vertical? Express your answer numerically in meters per second.
A stretched string fixed at each end has a mass of 40.0 g and a length...
A stretched string fixed at each end has a mass of 40.0 g and a length of 7.20 m. The tension in the string is 40.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (Answer from smallest to largest distance from one end of the string.) nodes _____0________m _____2.40________m _____4.80_______m _____7.20_______m antinode _____1.20________m _____3.60________m _____6.00_______m (b) What is the vibration frequency for this harmonic? _____________Hz *For part (b), I keep getting 127.3 Hz which...
A thin taut string of mass 5.00 g is fixed at both ends and stretched such...
A thin taut string of mass 5.00 g is fixed at both ends and stretched such that it has two adjacent harmonics of 525 Hz and 630 Hz. The speed of a traveling wave on the string is 168 m/s. PART A: Determine which harmonic corresponds to the 630 Hz frequency. PART B: Find the linear mass density of this string. Express your answer with the appropriate SI units. PART C: Find the tension in the string. Express your answer...
1. A wave train is traveling along a string. Seven waves pass by a point in...
1. A wave train is traveling along a string. Seven waves pass by a point in 3.75 s. The distance from the top of a crest to the bottom of an adjacent trough is 0.462 cm. Find: a) the speed of the waves. b) the tension in the string if it has a length of 1.68 m and a mass of 3.86 g. 2. Suppose that the string in problem #1 is attached to a second string whose linear density...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT