Question

A stretched string fixed at each end has a mass of 40.0 g and a length...

A stretched string fixed at each end has a mass of 40.0 g and a length of 7.20 m. The tension in the string is 40.0 N.
(a) Determine the positions of the nodes and antinodes for the third harmonic. (Answer from smallest to largest distance from one end of the string.)
nodes

_____0________m

_____2.40________m

_____4.80_______m

_____7.20_______m

antinode

_____1.20________m

_____3.60________m

_____6.00_______m

(b) What is the vibration frequency for this harmonic?

_____________Hz

*For part (b), I keep getting 127.3 Hz which is wrong

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stretched string fixed at each end has a mass of 39.0 g and a length...
A stretched string fixed at each end has a mass of 39.0 g and a length of 7.20 m. The tension in the string is 44.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (Enter your answers from smallest to largest distance from one end of the string.) nodes: m m m m antinodes: m m m (b) What is the vibration frequency for this harmonic? Hz
A stretched string fixed at each end has a mass of 46.0 g and a length...
A stretched string fixed at each end has a mass of 46.0 g and a length of 9.00 m. The tension in the string is 52.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (Enter your answers from smallest to largest distance from one end of the string.) nodes: m m m m antinodes: m m m (b) What is the vibration frequency for this harmonic? Hz
A stretched string fixed at each end has a mass of 36.0 g and a length...
A stretched string fixed at each end has a mass of 36.0 g and a length of 7.60 m. The tension in the string is 48.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (Enter your answers from smallest to largest distance from one end of the string.) nodes: _____ m _____m _____m _____m antinodes: _____m _____m _____m (b) What is the vibration frequency for this harmonic? ________ Hz A train at a speed...
A stretched string fixed at each end has a mass of 40.0 g and a length...
A stretched string fixed at each end has a mass of 40.0 g and a length of 8.00 m. the tension in the string is 49.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (b) What is the vibration frequency of this harmonic? I know the answers to each part but I need depth explanantion for each step please ..... why is the fundamental for the antinodes lamda/4 and why is the nodes lamda/2...
A thin taut string of mass 5.00 g is fixed at both ends and stretched such...
A thin taut string of mass 5.00 g is fixed at both ends and stretched such that it has two adjacent harmonics of 525 Hz and 630 Hz. The speed of a traveling wave on the string is 168 m/s. (a) Determine which harmonic corresponds to the 630 Hz frequency. (b) Find the linear mass density of this string. (c) Find the tension in the string.
A guitar string with a linear density of 2.0 g/m is stretched between supports that are...
A guitar string with a linear density of 2.0 g/m is stretched between supports that are 60 cm apart. The string is observed to form a standing wave with three antinodes when driven at a frequency of 420 Hz. What are (a) the frequency of the fifth harmonic of this string and (b) the tension in the string?
A thin taut string of mass 5.00 g is fixed at both ends and stretched such...
A thin taut string of mass 5.00 g is fixed at both ends and stretched such that it has two adjacent harmonics of 525 Hz and 630 Hz. The speed of a traveling wave on the string is 168 m/s. PART A: Determine which harmonic corresponds to the 630 Hz frequency. PART B: Find the linear mass density of this string. Express your answer with the appropriate SI units. PART C: Find the tension in the string. Express your answer...
A stretched string has a mass per unit length of 5.00 g/cm and a tension of...
A stretched string has a mass per unit length of 5.00 g/cm and a tension of 10.0 N. A sinusoidal wave on this string has an amplitude of 0.12 mm and a frequency of 100 Hz and is travel- ing in the negative direction of an x axis. What are the (a) speed, (b) wavelength, and (c) period of the wave?
A stretched string is 1.91 m long and has a mass of 20.9 g. When the...
A stretched string is 1.91 m long and has a mass of 20.9 g. When the string oscillates at 440 Hz , which is the frequency of the standard A pitch, transverse waves with a wavelength of 16.7 cm travel along the string. Calculate the tension ? in the string.
A string with both ends held fixed is vibrating in its third harmonic. The waves have...
A string with both ends held fixed is vibrating in its third harmonic. The waves have a speed of 193 m/s and a frequency of 235 Hz. The amplitude of the standing wave at an antinode is 0.380 cm. a)Calculate the amplitude at point on the string a distance of 16.0 cm from the left-hand end of the string. b)How much time does it take the string to go from its largest upward displacement to its largest downward displacement at...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT