Question

A string with both ends held fixed is vibrating in its third harmonic. The waves have...

A string with both ends held fixed is vibrating in its third harmonic. The waves have a speed of 193 m/s and a frequency of 215 Hz . The amplitude of the standing wave at an antinode is 0.390 cm .

Part A

Calculate the amplitude at point on the string a distance of 17.0 cm from the left-hand end of the string. (m)

Part B

How much time does it take the string to go from its largest upward displacement to its largest downward displacement at this point? (s)

Part C

Calculate the maximum transverse velocity of the string at this point. (m/s)

Part D

Calculate the maximum transverse acceleration of the string at this poin (m/s^2)

pls halp.

Homework Answers

Answer #1

First calculate the wavelength using
speed = frequency x wavelength
So wavelength = speed/frequency = 193/215 = 0.8976m = 89.76 cm.

The amplitude of vibration y follows a sine curve:
y = Asin(2π.x/L)
where A=39 cm(I guess you have mentioned wrong unit in the question) is maximum amplitude (ie at an antinode), x=17 cm is distance along string, and L=89.76 cm is wavelength.
y = 39sin(2π.17/89.76) =39*0.9279 = 36.1881cm

The time taken in moving from largest upward to largest downward displacements is half a period (the same as for any point along the string).
Period = 1/frequency =1/215Hz = 0.00465s = 4.65 ms.
So the time taken = 4.65ms.

Calculations maybe faulty, logic is correct.

Hope this helps :)

Not sure about the last two parts.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A string with both ends held fixed is vibrating in its third harmonic. The waves have...
A string with both ends held fixed is vibrating in its third harmonic. The waves have a speed of 193 m/s and a frequency of 235 Hz. The amplitude of the standing wave at an antinode is 0.380 cm. a)Calculate the amplitude at point on the string a distance of 16.0 cm from the left-hand end of the string. b)How much time does it take the string to go from its largest upward displacement to its largest downward displacement at...
A 4.70-m-long string that is fixed at one end and attached to a long string of...
A 4.70-m-long string that is fixed at one end and attached to a long string of negligible mass at the other end is vibrating in its fifth harmonic, which has a frequency of 428 Hz. The amplitude of the motion at each antinode is 2.82 cm. (a) What is the wavelength of this wave? ?5 =  m (b) What is the wave number? k5 =  m?1 (c) What is the angular frequency? ?5 =  s?1 (d) Write the wave function for this standing...
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at...
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at successive (that is, modes m and m + 1) frequencies of 38 Hz and 42 Hz respectively. The tension in the string is 720 N. What is the fundamental frequency of the standing wave? Hint: recall that every harmonic frequency of a standing wave is a multiple of the fundamental frequency. What is the speed of the wave in the string? What is the...
A guitar string vibrates in its fundamental mode, with nodes at its ends. The length of...
A guitar string vibrates in its fundamental mode, with nodes at its ends. The length of the rope segment that vibrates freely is 0.386 m. The maximum transverse acceleration of a point at the midpoint of the segment is 8.40x103 m / s2, and the maximum transverse velocity is 3.80 m / s. a) Calculate the amplitude of this standing wave. b) How fast are transverse traveling waves in this rope? a a) 1.72 m b) 543 m/s b a)...
The following two waves are sent in opposite directions on a horizontal string so as to...
The following two waves are sent in opposite directions on a horizontal string so as to create a standing wave in a vertical plane: y1(x, t) = (6.80 mm) sin(4.80πx - 460πt) y2(x, t) = (6.80 mm) sin(4.80πx + 460πt), with x in meters and t in seconds. An antinode is located at point A. In the time interval that point takes to move from maximum upward displacement to maximum downward displacement, how far does each wave move along the...
A thin taut string is fixed at both ends and stretched along the horizontal x-axis with...
A thin taut string is fixed at both ends and stretched along the horizontal x-axis with its left end at x = 0. It is vibrating in its third OVERTONE, and the equation for the vertical displacement of any point on the string is y(x,t) = (1.22 cm) sin[(14.4 m-1)x] cos[(166 rad/s)t].
A harmonic wave of amplitude 10.0 cm passes through a string. The harmonic wave has a...
A harmonic wave of amplitude 10.0 cm passes through a string. The harmonic wave has a frequency of 37.5 Hz. What is the average speed (not velocity!) of a point on the string as the wave is going through the string? Give your answer in units of m/s, to three significant figures.
Oscillation of a 230 Hz tuning fork sets up standing waves in a string clamped at...
Oscillation of a 230 Hz tuning fork sets up standing waves in a string clamped at both ends. The wave speed for the string is 750 m/s. The standing wave has four loops and an amplitude of 1.6 mm. (a) What is the length of the string? (b) Write an equation for the displacement of the string as a function of position and time. Round numeric coefficients to three significant digits.
The second harmonic standing wave on a particular string fixed at both ends is given by:...
The second harmonic standing wave on a particular string fixed at both ends is given by: y(x, t) = 0.01 sin(2π x) cos(200π t) (in SI units). a) Fill in the following information: λ2 = f2 = v = b) How long is the string, and what is its fundamental frequency? L =   f1 = c) This second harmonic wave has total energy E2. If the string is plucked so that has the first harmonic wave on it instead at...
Two waves traveling on a string in the same direction both have a frequency of 100...
Two waves traveling on a string in the same direction both have a frequency of 100 Hz, a wavelength of 2 cm, and an amplitude of 0.02 m. What is the amplitude of the resultant wave if the original waves differ in phase by each of the following values? (a) π/6 cm (b) π/3
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT